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Abstract. Device scaling, the driving force of CMOS tech-
nology, led to continuous decrease in the energy level rep-
resenting logic states. The resulting small noise margins in
combination with increasing problems regarding the supply
voltage stability and process variability creates a design con-
flict between efficiency and reliability. This conflict is ex-
pected to rise more in future technologies. Current research
approaches on fault-tolerance architectures and countermea-
sures at circuit level, unfortunately, cause a significant area
and energy penalty without guaranteeing absence of errors.
To overcome this problem, it seems to be attractive to toler-
ate bit errors at circuit level and employ error handling meth-
ods at higher system levels. To do this, an estimate of the
bit error rate (BER) at circuit level is necessary. Due to the
size of the circuits, Monte Carlo simulation suffers from im-
practical runtimes. Therefore the needed modeling scheme is
proposed. The model allows a probabilistic estimation of er-
ror rates at circuit level taking into account statistical effects
ranging from supply noise and electromagnetic coupling to
process variability within reasonable runtimes.

1 Introduction

VLSI technology has adhered to Moore’s Law by aggressive
device dimensions scale down. Simultaneously supply volt-
ages are being decreased. As shown in Fig. 1, the result-
ing design space is limited by fundamental borders due to
quantum mechanical and thermodynamics effects. Current
40-nm CMOS technology is shown by the efficiency curve
of a NAND gate with varying supply voltages. To further in-
crease efficiency in future VLSI technologies we are moving
closer to the fundamental limits. At the same time the in-
creasing number of devices integrated into circuits severely
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strains the supply networks, making it increasingly challeng-
ing to generate low noise supply voltages. Furthermore ef-
fects such as process variability do not scale with technol-
ogy. As a result, timing and switching behavior of logic gates
is increasingly susceptible to transient faults. As predicted
by the ITRS roadmap (ITRS, 2009), future VLSI technology
will therefore face reliability as a new design challenge.

Fault tolerance approaches handling reliability problems
date back to the 1950s, when John von Neumann proposed
a multiplexing and redundancy scheme for reliable circuits
(Neumann, 1956). In more recent approaches von Neu-
mann’s concepts have been adapted and enhanced in several
ways, e.g.Blaauw et al.(2008); Hegde and Shanbhag(1999).
The considerable cost of both area and/or power consump-
tion is common in all these approaches. Due to the fact that
parts of the circuitry remain unprotected complete absence of
errors cannot be guaranteed. Consequently there is a design
conflict between energy efficiency and reliability.

As an alternative approach, it is promising to tolerate bit
errors at circuit level and deal with them at higher system lev-
els. Making use of error handling blocks – e.g. channel de-
coders – already integrated into most signal processing sys-
tems, the cost for increased system reliability can be reduced,
thus increasing efficiency. An accurate estimation of the
stored bit error rate (BER) (Noll, 2010) generated by hard-
ware because of transient faults is a center piece in this ap-
proach to make sure system failure is avoided. Monte Carlo
simulation is often used to model statistical effects such as
noise and variability; but, due to the large device count in
circuits and the number of effects to be taken into account, it
unfortunately requires unacceptable runtimes.

In case of the effects of variability on timing, statistical
static timing analysis (SSTA) (Li et al., 2009) was proved
to be very efficient. Because timing errors represent a sin-
gle class of transient errors, SSTA is not sufficient to esti-
mate the BER at circuit level. Therefore this work proposes
a novel statistical modeling technique that takes into account
the effects of noise and variability on the error rate.
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Figure 1. Design space: power consump-

tion vs. gate delay [Waser] 
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Fig. 1. Design space: power consumption vs. gate delay (Waser,
2005).

2 Modeling concept

Although the sources of transient faults in digital circuits are
manifold, including electromagnetic coupling as well as sup-
ply noise and particle strikes, their effects are very similar.
Transient faults can affect timing and voltage levels of sig-
nals. These effects in turn can induce timing errors, invalid
signals or bit-flips. A model addressing transient faults in
general has to take into account all of these effects to accu-
rately estimate the resulting bit error rate. Furthermore prop-
agation of errors along the different logic gates in a circuit
needs to be considered.

Since problem complexity increases with more effects to
be considered, two approaches are integrated into the mod-
eling approach to simplify the model. Making use of the di-
vision of logic circuits into pipeline stages the model can be
partitioned accordingly. Instead of simulation, the logic gates
in a pipeline stage are rather modeled statistically. Input and
output voltages of the logic gate are described by their prob-
ability density functions (PDF) instead of signal waveforms
(see Fig. 2) for further complexity reduction.

Errors propagate from one pipeline stage to the next only
if an incorrect value is stored in the latch separating the two
pipeline stages. Then only pipeline stages need to consid-
ered, each consisting of hundreds to thousands of logic gates,
as opposed to considering millions of gates in complete sys-
tem. Therefore the PDF of input voltage values at the latch
during sampling time needs to be known, which is the same
as the PDF of the output voltage of the last logic gate in the
pipeline stage. Defining voltage intervals for correct, uncer-
tain and incorrect values, the number of bit errors passing
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Figure 2. Modeling of logic gates 
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Fig. 2. Modeling of logic gates.

the latch can be estimated. As noise and variability influence
voltage levels and timing as well, the PDF of the delay along
the pipeline stage have to be considered.

The effects of variability on switching times can be evalu-
ated efficiently with SSTA methods. Moreover, for a compre-
hensive model allowing estimation of the stored BER another
model is required to gain knowledge of the voltage level PDF
of the individual logic gates in a pipeline stage.

2.1 Transfer characteristics

The basic principle used in the statistical modeling of logic
gates is to project the PDF of the input voltages to a PDF of
the output voltage of the gate. To achieve this, each input
voltage PDF is partitioned into discrete intervalsVa < Vin <

Vb with an associated probabilityP(Va< Vin < Vb). Consid-
ering the output voltagesVout,a andVout,b associated with the
edges of an intervalVa andVb, an appropriate output voltage
interval is identified to which the probability is mapped. For
an inverter, as an example, the mapping is shown in Fig. 3
and represented by

P(Vout,b < Vout< Vout,a) = P(Va< Vin < Vb). (1)

WhereP(Vout,b < Vout< Vout,a) is the probability of the out-
put voltage being in the range betweenVout,a andVout,b. In
Fig. 3 the input voltage PDF shown in the lower right is pro-
jected to an output PDF on the left using the transfer charac-
teristics of the inverter.

Thus, the output voltage PDFp(Vout) can be generated
by repeating this mapping for all input voltage intervals. In
general, for gates with multiple input ports, the combined
probabilities of the input intervals have to be used as for two
input ports in

P(Vout,b,d < Vout< Vout,a,c)

= P(Va< Vin,0 < Vb∧Vc < Vin,1 < Vd).
(2)

Equation (1) is here extended to include input voltagesVin,0
andVin,1. With both voltages being in defined intervals, the
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Figure 3. Statistical modeling of an 

inverter without noise 
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transfer curves is employed instead of a 

single nominal one. The individual 
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by Monte Carlo simulation of the logic 
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modeled. The resulting set of transfer 

Fig. 3. Statistical modeling of an inverter without noise.

edges of these input intervals are used to calculate the edges
of the appropriate interval of the output voltage.

This basic modeling concept does not yet consider adverse
effects like supply noise or variability. To account for these, a
set of transfer curves is employed instead of a single nominal
one. The individual characteristics of these sets are gener-
ated by Monte Carlo simulation of the logic gate influenced
by the effects to be modeled. The resulting set of transfer
curves for an inverter under threshold voltage variation is
shown in Fig. 4. Each of the characteristics is associated with
a combination of threshold voltages for the n- and p-channel
transistor.

The probabilityP(Ci) of the occurrence of a given com-
bination of effectsCi is known. Therefore the overall PDF
of the output voltage can be derived by estimating the output
PDFp(Vout|Ci) for eachCi ; weighing these with the accord-
ing probabilitiesP(Ci) and accumulating the results as in

p(Vout)total=
∑

i

P(Ci) · p(Vout|Ci). (3)

To model a complete pipeline stage the results are taken as
input PDF for the subsequent logic gates and the estimate is
repeated until reaching the latch.

3 Conclusion

As predicted by the ITRS roadmap, reliability of VLSI cir-
cuits is becoming a serious problem, especially for low
power applications, for future VLSI technologies. Reduction
of supply voltages, noise on the supply net or electromag-
netic coupling and variability severely increase susceptibility
of circuits to transient faults. Fault tolerant architectures and
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Figure 4. Set of transfer curves of an 

inverter subjected to threshold voltage 

variation 
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Fig. 4. Set of transfer curves of an inverter subjected to threshold
voltage variation.

circuits approaches currently developed suffer from a signif-
icant overhead in area and power consumption. It thus seems
to be attractive to keep efficiency by tolerating bit errors and
making use of error handling mechanisms present at higher
system levels to cope with them.

Knowledge of the BER at the physical level is essential
to this approach. A statistical modeling concept is proposed
allowing estimation of the stored BER with moderate effort
compared to Monte Carlo simulations.

Beyond the basic concept presented in this work research
on this subject will have to cover several aspects. Regarding
the proposed statistical reliability estimation, the interdepen-
dences of input signals of the logic gates in a pipeline stage
needs to be considered as well as a statistical description of
disturbances due to electromagnetic coupling. Furthermore,
to devise a framework for estimation of the impact of phys-
ical faults on timing and voltage levels, the actual merging
of SSTA and the proposed statistical voltage level modeling
methods needs to be established.
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