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Abstract. The vector spherical-multipole analysis is applied
to determine the scattering of a plane electromagnetic wave
by a perfectly electrically conducting (PEC) semi-infinite el-
liptic cone. From the eigenfunction expansion of the total
field in the space outside the elliptic cone, the scattered far
field is obtained as a multipole expansion of the free-space
type by a single integration over the induced surface cur-
rents. As for the evaluation of the free-space-type expansion
it is necessary to apply suitable series transformation tech-
niques, a sufficient number of eigenfunctions has to be con-
sidered. The eigenvalues of the underlying two-parametric
eigenvalue problem with two coupled Lamé equations be-
long to the Dirichlet- or the Neumann condition and can be
arranged as so-called eigenvalue curves. It has been observed
that the eigenvalues are in two different domains: In the first
one Dirichlet- and Neumann eigenvalues are either nearly co-
inciding, while in the second one they are strictly separated.
The eigenfunctions of the first (coinciding) type look very
similar to free-space modes and do not contribute to the scat-
tered field. This observation allows to significantly improve
the determination of diffraction coefficients.

1 Introduction

Electromagnetic scattering by a PEC elliptic cone is of prac-
tical importance for several reasons. First, the geometry in-
cludes a tip, and the related tip-diffraction coefficient could
be used to improve asymptotically valid methods like GTD
and UTD in describing scattering by complex electrically
large systems. Second, as the geometry can be treated mostly
analytically using sphero-conal coordinates and the vector
spherical-multipole expansion, the obtained results (e.g., for
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a finite elliptic cone with the degenerations sector and cir-
cular cone) can serve as a reference for numerical com-
putations. Scattering by circular and (less often) by ellip-
tic cones have been treated by many authors in the litera-
ture. Summaries on the different approaches can be found
in Bowman et al.(1987); Klinkenbusch(2007). This paper
starts with a description of sphero-conal coordinates which
are used to describe the elliptic cone geometry. For an inci-
dent plane electromagnetic wave the exact total field outside
and the corresponding surface current on the elliptic cone are
determined by a spherical-multipole (eigenfunction) expan-
sion based on suitable solutions of the scalar homogeneous
Helmholtz equation. The far field is then found as a free-
space type spherical-multipole expansion from an integra-
tion over the surface current. In sphero-conal coordinates
the solution of the scalar Helmholtz equation leads to a two-
parametric eigenvalue problem with two coupled Lamé dif-
ferential equations, that is, the differential equations of the
periodic and of the non-periodic Lamé functions. The two
separation parameters can be arranged on so-called eigen-
value curves on which the Dirichlet- and Neumann eigenval-
ues are discretely distributed. It turns out that the numeri-
cal determination of some of these eigenvalues is difficult,
however, as will be shown exactly these eigenvalues do not
significantly contribute to the scattered far field and can be
automatically sorted out. Finally, this procedure leads to an
improved accuracy in determining the scattering coefficient
magnitudes and phases.
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Fig. 1. Sphero-conal coordinate surfaces

The ranges of the values are0≤ r <∞, 0≤ϑ≤ π, 0≤ϕ≤
2π and the ellipticity parameters k and k’ satisfy

0≤ k, k′≤ 1; k2+k′2 =1. (2)

The coordinate surfaces are shown in Fig. 1. The elliptic
cone is identical to the coordinate surfaceϑ=ϑ0 and can be
characterized by the half opening anglesϑx = ϑ0 andϑy =
arccos(kcosϑ0). The normalized metric scaling coefficients
are given by
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Note that the elliptic cone includes several interesting de-
generations: Fork = 1 the elliptic cone turns into a circu-
lar cone whileϑ0 = π describes a plane angular sector with
half-opening anglearccos(k).

3 Eigenfunction Expansion of the Total Field

In a linear, homogeneous, and isotropic domain outside the
elliptic cone the total electromagnetic field can be derivedas
a multipole (eigenfunction) expansion in sphero-conal coor-
dinates which is based on the corresponding solution of the
scalar homogeneous Helmholtz equation

∆Ψ(r)+κ2Ψ(r)= 0 (5)

whereκ=ω
√
µε denotes the wave number. A first separa-

tion ansatz
Ψ(r,ϑ,ϕ)=R(r)Y (ϑ,ϕ) (6)

with a first separation constantν(ν+1) leads to the differen-
tial equation of the spherical Bessel functions with solutions
zν(κr) and to the eigenvalue equation of surface spherical
harmonics which are referred to as Lamé products in case of
sphero-conal coordinates

(r×∇)
2
Yν(ϑ,ϕ)+ν(ν+1)Yν(ϑ,ϕ)= 0 (7)

For the given problem it is necessary to have solutions which
are (at least)2π - periodic inϕ and fulfill canonical boundary
conditions atϑ=ϑ0:
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=0 (8)
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A second separation ansatz of the form

Yν(ϑ,ϕ)=Θν(ϑ)Φν(ϕ) (10)

with a second separation constantλ yields two ordinary dif-
ferential equations:
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Equation (11) is referred to as the differential equation ofthe
periodic Lamé functionsΦν(ϕ) while Eq. (12) represents
the differential equation of the non-periodic Lamé functions
Θν(ϑ). The periodic Lamé functions can be described as in-
finite Fourier series and the non-periodic Lamé functions are
expanded into infinite series using associated Legendre func-
tions of the 1st kind (Boersma and Jansen, 1990). In case
of solutions in the free unbounded space the eigenvalues are
integers (ν=n=1,2,3,..), the series become finite, and con-
sequently the solutions turn into periodic and non-periodic
Lamé polynomialsΦnm(ϕ) andΘnm(ϑ), respectively.

For a given value ofν and of the parameterk2 the cor-
responding second separation constantλ can be numerically
determined. The resulting(ν,λ)-pairs lie on characteristic
eigenvalue curves sorted by numbersm = 0,1,2,... Any
arbitrary pair of eigenvalues(ν,λ) lying on the eigenvalue
curves leads to a valid solution of the eigenvalue equation of
the Lamé products (7). Additional Dirichlet- and Neumann
boundary conditions imposed upon the nonperiodic Lamé
functionsΘν atϑ0 result in a discrete spectrum of eigenvalue
pairs (νi,λi) (i= 1,2,3,..) lying on the eigenvalue curves.
Figure 2 exemplarily shows the eigenvalue curves with dis-
crete Dirichlet- and Neumann eigenvalues. Due to the Sturm-
Liouville properties of the Lamé differential equations the
discrete Dirichlet- and Neumann eigenvalues strictly mustal-
ternate on the eigenvalue curves (Boersma and Jansen, 1990).

Outside the PEC elliptic cone the total electromag-
netic field can be expressed in the form of a spherical-
multipole (eigenfunction) expansion (Stratton, 1941; Blume

Fig. 1. Sphero-conal coordinate surfaces.

2 Sphero-conal coordinates

Sphero-conal coordinatesr, ϑ , ϕ are related to Cartesian co-
ordinates by (Boersma and Jansen, 1990)
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Note that the elliptic cone includes several interesting de-
generations: Fork = 1 the elliptic cone turns into a circu-
lar cone whileϑ0 = π describes a plane angular sector with
half-opening angle arccos(k).

3 Eigenfunction expansion of the total field

In a linear, homogeneous, and isotropic domain outside the
elliptic cone the total electromagnetic field can be derived as
a multipole (eigenfunction) expansion in sphero-conal coor-
dinates which is based on the corresponding solution of the
scalar homogeneous Helmholtz equation
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harmonics which are referred to as Lamé products in case of
sphero-conal coordinates
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For the given problem it is necessary to have solutions which
are (at least) 2π – periodic inϕ and fulfill canonical boundary
conditions atϑ = ϑ0:
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Equation (11) is referred to as the differential equation of
the periodic Laḿe functions8ν(ϕ) while Eq. (12) represents
the differential equation of the non-periodic Lamé functions
2ν(ϑ). The periodic Laḿe functions can be described as in-
finite Fourier series and the non-periodic Lamé functions are
expanded into infinite series using associated Legendre func-
tions of the 1st kind (Boersma and Jansen, 1990). In case of
solutions in the free unbounded space the eigenvalues are in-
tegers (ν = n = 1,2,3,..), the series become finite, and con-
sequently the solutions turn into periodic and non-periodic
Lamé polynomials8nm(ϕ) and2nm(ϑ), respectively.

For a given value ofν and of the parameterk2 the cor-
responding second separation constantλ can be numerically
determined. The resulting(ν,λ)-pairs lie on characteristic
eigenvalue curves sorted by numbersm = 0,1,2,... Any arbi-
trary pair of eigenvalues(ν,λ) lying on the eigenvalue curves
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Fig. 2. Eigenvalue curvesλ(ν) for k2 =0.5 with Dirichlet eigen-
values (×) and Neumann eigenvalues (◦)

and Klinkenbusch, 1999)

E
tot(r) =

∑

σ

aσNσ(r)+
Z

j

∑

τ

bτM τ (r) (13)

H
tot(r) =

j

Z

∑

σ

aσMσ(r)+
∑

τ

bτNτ (r) (14)

where the expansion functions which are referred to as the
vector spherical-multipole functions can be derived from the
elementary solutions of the scalar homogeneous Helmholtz
equationΨν(r) by
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with r̂= r/r denoting the unit vector andκ=ω
√
ε0µ0 being

the wave number in the free space. The transverse vector
functions are defined as
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and the electric and magnetic multipole amplitudes are given
by aσ and bτ , respectively. Note that the indicesσ and τ
symbolize the Dirichlet- and Neumann conditions as defined
in (8) and (9) to ensure the vanishing of the tangential elec-
tric field on the surface of the PEC elliptic cone. The inci-
dent plane wave is realized by locating a Hertzian dipole at

infinity and multiplying the resulting field by an appropriate
factor (Blume and Klinkenbusch, 1999). For a plane wave
with amplitudeE0 incident from(θinc,φinc) and electrically
polarized in the direction̂C, the multipole amplitudes of the
total field are found as
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µ0/ε0 is the intrinsic impedance of the free
space.

4 Spherical-Multipole Expansion of the Scattered Field

The scattered field is determined from the surface current
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that the scattered electric far field can be written in form ofa
multipole expansion
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Fig. 2. Eigenvalue curvesλ(ν) for k2
= 0.5 with Dirichlet eigenval-

ues (×) and Neumann eigenvalues (◦).

leads to a valid solution of the eigenvalue equation of the
Lamé products Eq. (7). Additional Dirichlet- and Neumann
boundary conditions imposed upon the non-periodic Lamé
functions2ν atϑ0 result in a discrete spectrum of eigenvalue
pairs (νi,λi) (i = 1,2,3,..) lying on the eigenvalue curves.
Figure2 exemplarily shows the eigenvalue curves with dis-
crete Dirichlet- and Neumann eigenvalues. Due to the Sturm-
Liouville properties of the Laḿe differential equations the
discrete Dirichlet- and Neumann eigenvalues strictly must al-
ternate on the eigenvalue curves (Boersma and Jansen, 1990).

Outside the PEC elliptic cone the total electromag-
netic field can be expressed in the form of a spherical-
multipole (eigenfunction) expansion (Stratton, 1941; Blume
and Klinkenbusch, 1999)
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in Eqs. (8) and (9) to ensure the vanishing of the tangential
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with the multipole amplitudes
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with the multipole amplitudes
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Finally, the scattered far field can be written as a function of
the incident field by means of a scattering matrix as
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While the series in (24) and (25) converge and yield stable
multipole amplitudes of the scattered field, the resulting se-
ries in (23) do not converge. In order to obtain a meaningful
limiting value it is necessary to apply a suitable sequence
transformation. In contrast to nonlinear techniques (likethe
Shanks transform) linear sequence transformations always
yield consistent results. For the linear Cesàro transformthe
transformed partial sum sequences′n is obtained from the
original partial sum sequencesn by

s′n =
s0+s1+s2+ ...+sn

n+1
, n=0,1,2,.. (27)

The sequence transformation can be repeatedly applied to
enforce faster convergence of the resulting partial sum se-
quence. Figure 3 shows the double transformed partial sum
sequence of the scattering coefficentDθθ as a function of
n. Clearly, a higher order of the original series and hence a
higher number of eigenvalues is desired to obtain more ac-
curate results. In order to increase the maximum number of
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available eigenvalues and eigenfunctions it is necessary to in-
vestigate the relevance of eigenvalues and eigenmodes which
will be sketched in the following section.

5 Eigenmode analysis

In Fig. 2 it has been shown that the discrete(ν,λ)-pairs ar-
ranged in an eigenvalue-curve scheme which can approxi-
mately be divided into an upper region where Dirichlet- and
Neumann eigenvalues nearly coincide and into a lower re-
gion where Dirichlet- and Neumann eigenvalues are strictly
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quence.

asc
n,m = −j2n,m(ϑ0){√

1−k2cos2ϑ0

∑
σ

ασ

d2σ

dϑ

∣∣∣∣
ϑ0

∞∫
0

jn(κr)

r
jσ (κr)κrdr

2π∫
0

8n,m(ϕ)8σ (ϕ)√
1−k′2sin2ϕ

dϕ

−

∑
τ

Z

j
βτ2τ (ϑ0)

∞∫
0

jn(κr)

r

[rjτ (κr)]′

κr
κrdr

2π∫
0

8n,m(ϕ)
d8τ (ϕ)

dϕ
dϕ

+

∑
τ

Z

j
βτ2τ (ϑ0)

τ (τ +1)

n(n+1)

∞∫
0

[rjn(κr)]′

κr

jτ (κr)

r
κrdr

2π∫
0

d8n,m(ϕ)

dϕ
8τ (ϕ)dϕ

}
(24)

Z

j
bsc
n,m = j

d2n,m

dϑ

∣∣∣∣
ϑ0

√
1−k2cos2ϑ0

∑
τ

Z

j
βτ2τ (ϑ0)

τ (τ +1)

n(n+1)

∞∫
0

jn(κr)
jτ (κr)

r
κrdr

2π∫
0

8n,m(ϕ)8τ (ϕ)√
1−k′2sin2ϕ

dϕ.

(25)
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with the multipole amplitudes

ascn,m=−jΘn,m(ϑ0)
{

√

1−k2cos2ϑ0

∑

σ

ασ

dΘσ

dϑ

∣

∣

∣

∣

ϑ0

∞
∫

0

jn(κr)

r
jσ(κr)κrdr

2π
∫

0

Φn,m(ϕ)Φσ(ϕ)
√

1−k′2sin2ϕ
dϕ

−
∑

τ

Z

j
βτΘτ (ϑ0)

∞
∫

0

jn(κr)

r

[rjτ (κr)]
′

κr
κrdr

2π
∫

0

Φn,m(ϕ)
dΦτ (ϕ)

dϕ
dϕ

+
∑

τ

Z

j
βτΘτ (ϑ0)

τ(τ +1)

n(n+1)

∞
∫

0

[rjn(κr)]
′

κr

jτ (κr)

r
κrdr

2π
∫

0

dΦn,m(ϕ)

dϕ
Φτ (ϕ)dϕ

}

(24)

Z

j
bscn,m= j

dΘn,m

dϑ

∣

∣

∣

∣

ϑ0

√

1−k2cos2ϑ0

∑

τ

Z

j
βτΘτ (ϑ0)

τ(τ +1)

n(n+1)

∞
∫

0

jn(κr)
jτ (κr)

r
κrdr

2π
∫

0

Φn,m(ϕ)Φτ (ϕ)
√

1−k′2sin2ϕ
dϕ.

(25)

Finally, the scattered far field can be written as a function of
the incident field by means of a scattering matrix as

(

Esc
θ (θ,φ)

Esc
φ (θ,φ)

)

=
e−jκr

κr

(

Dθθ Dθφ

Dφθ Dφφ

)(

Einc
θ (θ′,φ′)

Einc
φ (θ′,φ′)

)

(26)
While the series in (24) and (25) converge and yield stable
multipole amplitudes of the scattered field, the resulting se-
ries in (23) do not converge. In order to obtain a meaningful
limiting value it is necessary to apply a suitable sequence
transformation. In contrast to nonlinear techniques (likethe
Shanks transform) linear sequence transformations always
yield consistent results. For the linear Cesàro transformthe
transformed partial sum sequences′n is obtained from the
original partial sum sequencesn by

s′n =
s0+s1+s2+ ...+sn

n+1
, n=0,1,2,.. (27)

The sequence transformation can be repeatedly applied to
enforce faster convergence of the resulting partial sum se-
quence. Figure 3 shows the double transformed partial sum
sequence of the scattering coefficentDθθ as a function of
n. Clearly, a higher order of the original series and hence a
higher number of eigenvalues is desired to obtain more ac-
curate results. In order to increase the maximum number of
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Fig. 3. Partial sum sequence of the real part of the scattering coef-
ficientDθθ for the maximum order ofnmax =40. Dotted curve is
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quence.

available eigenvalues and eigenfunctions it is necessary to in-
vestigate the relevance of eigenvalues and eigenmodes which
will be sketched in the following section.

5 Eigenmode analysis

In Fig. 2 it has been shown that the discrete(ν,λ)-pairs ar-
ranged in an eigenvalue-curve scheme which can approxi-
mately be divided into an upper region where Dirichlet- and
Neumann eigenvalues nearly coincide and into a lower re-
gion where Dirichlet- and Neumann eigenvalues are strictly
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Finally, the scattered far field can be written as a function of
the incident field by means of a scattering matrix as(

Esc
θ (θ,φ)

Esc
φ (θ,φ)

)
=

e−jκr

κr

(
Dθθ Dθφ

Dφθ Dφφ

)(
Einc

θ (θ ′,φ′)

Einc
φ (θ ′,φ′)

)
(26)

While the series in Eqs. (24) and (25) converge and yield
stable multipole amplitudes of the scattered field, the result-
ing series in Eq. (23) do not converge. In order to obtain a
meaningful limiting value it is necessary to apply a suitable
sequence transformation. In contrast to nonlinear techniques
(like the Shanks transform) linear sequence transformations
always yield consistent results. For the linear Cesàro trans-
form the transformed partial sum sequences′

n is obtained
from the original partial sum sequencesn by

s′
n =

s0+s1+s2+ ...+sn

n+1
, n = 0,1,2,.. (27)

The sequence transformation can be repeatedly applied to
enforce faster convergence of the resulting partial sum se-
quence. Figure3 shows the double transformed partial sum
sequence of the scattering coefficentDθθ as a function of
n. Clearly, a higher order of the original series and hence a
higher number of eigenvalues is desired to obtain more ac-
curate results. In order to increase the maximum number of
available eigenvalues and eigenfunctions it is necessary to in-
vestigate the relevance of eigenvalues and eigenmodes which
will be sketched in the following section.

5 Eigenmode analysis

In Fig. 2 it has been shown that the discrete(ν,λ)-pairs ar-
ranged in an eigenvalue-curve scheme which can approxi-
mately be divided into an upper region where Dirichlet- and
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Fig. 5. Sequence of non-periodic Lamé functionsΘν(ϑ) to the
Dirichlet boundary condition atϑ0 =160◦, k2 =0.5 (left column)
and (corresponding) non-periodic Lamé polynomialsΘn(ϑ) (right
column), each as function of the arguments.

separated. Figure 4 shows a closer view of this phenomenon
revealing that the coinciding eigenvalues all are very nearto
integral values (integers) ofν. Since the numerical computa-
tion of these coinciding eigenvalues turns out to imply some
numerical difficulties limiting the maximum number of com-
putable eigenvalues we will now investigate that case in more
detail.

The left column in Fig. 5 shows a sequence of plots of non-
periodic Lamé functions each satisfying the Dirichlet bound-
ary condition atϑ0 =160◦ as a function of the argumentϑ. In
the right column we see plots of the non-periodic Lamé poly-
nomials (with integral eigenvaluesν = n) at (n,λ)-pairs on
the same eigenvalue curve nearest by those ones of the corre-
sponding non-periodic Lamé functions. We observe that for
nearly integral eigenvalues of the non-periodic Lamé func-

tions not only their values atϑ0 are vanishing but also their
derivatives. Moreover, these eigenfunctions look very simi-
lar to the corresponding non-periodic Lamé polynomials. At
non-integral eigenvalues only the values of the non-periodic
Lamé functions vanish but not their derivatives, and their
curves are different from the corresponding non-periodic
Lamé polynomials, at least in the vicinity of the boundaries
ϑ=0 andϑ=π. This general behavior is typical and can be
observed for any other eigenvalue as well.

Due to numerical reasons, the computation of the nearly
integral eigenvalues and -functions turns out to be difficult.
However, as we can deduce from the representations of the
multipole amplitudes (24) and (25) the modes belonging to
these eigenvalues do not significantly contribute to the scat-
tered far field. Each part of (24) and (25) has a factor of one
of the following forms

Θτ (ϑ0) (28)

dΘσ(ϑ)

dϑ

∣

∣

∣

∣

ϑ=ϑ0

(29)

Clearly, if both function and derivative of a non-periodic
Lamé function are small atϑ0, the corresponding scattering
mode is also small compared to the other scattering modes.
In other words, these eigenmodes of the PEC cone do not sig-
nificantly lead to a surface current on the cone, or, the cone
is nearly invisible for these eigenmodes. Consequently, they
are very similar to free-space modes, which are characterized
by integral eigenvalues.

Following this observation, these nearly-integral eigenval-
ues and eigenfunctions don’t need to be exactly calculated,
and the modified algorithm allows to calculate much more
relevant eigenvalues and eigenfunctions to come to more ac-
curate scattering coefficients.

6 Scattering coefficients

Figure 6 shows the amplitude and the phase of the electric
far field scattered by a PEC semi-infinite elliptic cone illumi-
nated by a plane wave electrically polarized in the xz plane
and incident fromθinc =105◦, φinc =0◦. The amplitude of
the scattering coefficientDθθ is shown for the maximum or-
dernmax =40 including the integral-eigenvalue modes and
nmax = 60 excluding these non-contributing modes. The
comparison between the phases shows marginal differences,
however, the differences in amplitudes reveal the improve-
ment of the results by considering more relevant eigenmodes.

Finally, Fig. 7 proves that the errors of amplitudes and
phases of the scattering coefficient are actually marginal
when all of the near-integer eigenvalues are neglected.

7 Conclusions

It has been found that the accuracy of computed scattering
coefficients for a PEC elliptic cone can be greatly improved if
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Dirichlet boundary condition atϑ0 = 160◦, k2

= 0.5 (left column)
and (corresponding) non-periodic Lamé polynomials2n(ϑ) (right
column), each as function of the arguments.

Neumann eigenvalues nearly coincide and into a lower re-
gion where Dirichlet- and Neumann eigenvalues are strictly
separated. Figure4 shows a closer view of this phenomenon
revealing that the coinciding eigenvalues all are very near to
integral values (integers) ofν. Since the numerical computa-
tion of these coinciding eigenvalues turns out to imply some
numerical difficulties limiting the maximum number of com-
putable eigenvalues we will now investigate that case in more
detail.

The left column in Fig.5 shows a sequence of plots of non-
periodic Laḿe functions each satisfying the Dirichlet bound-
ary condition atϑ0 = 160◦ as a function of the argumentϑ .
In the right column we see plots of the non-periodic Lamé
polynomials (with integral eigenvaluesν = n) at (n,λ)-pairs
on the same eigenvalue curve nearest by those ones of the
corresponding non-periodic Lamé functions.

We observe that for nearly integral eigenvalues of the non-
periodic Laḿe functions not only their values atϑ0 are van-
ishing but also their derivatives. Moreover, these eigenfunc-
tions look very similar to the corresponding non-periodic
Lamé polynomials. At non-integral eigenvalues only the
values of the non-periodic Laḿe functions vanish but not
their derivatives, and their curves are different from the cor-
responding non-periodic Laḿe polynomials, at least in the
vicinity of the boundariesϑ = 0 andϑ = π . This general be-
havior is typical and can be observed for any other eigenvalue
as well.

Due to numerical reasons, the computation of the nearly
integral eigenvalues and -functions turns out to be difficult.
However, as we can deduce from the representations of the
multipole amplitudes Eqs. (24) and (25) the modes belong-
ing to these eigenvalues do not significantly contribute to the
scattered far field. Each part of Eqs. (24) and (25) has a factor
of one of the following forms

2τ (ϑ0)

d2σ (ϑ)

dϑ

∣∣∣∣
ϑ=ϑ0

Clearly, if both function and derivative of a non-periodic
Lamé function are small atϑ0, the corresponding scattering
mode is also small compared to the other scattering modes.
In other words, these eigenmodes of the PEC cone do not sig-
nificantly lead to a surface current on the cone, or, the cone
is nearly invisible for these eigenmodes. Consequently, they
are very similar to free-space modes, which are characterized
by integral eigenvalues.

Following this observation, these nearly-integral eigenval-
ues and eigenfunctions don’t need to be exactly calculated,
and the modified algorithm allows to calculate much more
relevant eigenvalues and eigenfunctions to come to more ac-
curate scattering coefficients.

6 Scattering coefficients

Figure6 shows the amplitude and the phase of the electric
far field scattered by a PEC semi-infinite elliptic cone illumi-
nated by a plane wave electrically polarized in the xz plane
and incident fromθ inc

= 105◦, φinc
= 0◦. The amplitude of

the scattering coefficientDθθ is shown for the maximum or-
der nmax= 40 including the integral-eigenvalue modes and
nmax = 60 excluding these non-contributing modes. The
comparison between the phases shows marginal differences,
however, the differences in amplitudes reveal the improve-
ment of the results by considering more relevant eigenmodes.

Finally, Fig. 7 proves that the errors of amplitudes and
phases of the scattering coefficient are actually marginal
when all of the near-integer eigenvalues are neglected.
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incident fromθinc =105◦, φinc =0◦.

−135 −105 −75 −45 −15 15 45 75 105 135
0

1

2

3

4

5

6

7

8

9

10

θ [deg]

 

 

|Dθθ(n=40)|

∆|Dθθ(n=40)|

−135 −105 −75 −45 −15 15 45 75 105 135
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−135 −105 −75 −45 −15 15 45 75 105 135
−5

−4

−3

−2

−1

0

1

2

3

4

5

θ [deg]

 

 

arg(Dθθ(n=40))

∆arg(Dθθ(n=40))

−135 −105 −75 −45 −15 15 45 75 105 135
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

−135 −105 −75 −45 −15 15 45 75 105 135
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 7. Amplitude and phase of the scattering coefficientDθθ (dashed line) in the xz plane of a PEC semi-infinite elliptic cone with the half
opening anglesαx =45◦, αy =60◦ andnmax =40. The plane wave is incident fromθinc =105◦, φinc =0◦. The solid line using the right
scale is the difference between the first amplitude (phase) resulting from all eigenvalues and the second amplitude (phase) resulting from all
eigenvalues except nearly integer eigenvalues.
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eigenvalues except nearly integer eigenvalues.
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7 Conclusions

It has been found that the accuracy of computed scattering
coefficients for a PEC elliptic cone can be greatly improved if
computationally difficult but non-relevant modes of the scat-
tered field are neglected. These non-scattered modes have
nearly integral eigenvalues and are very similar to the free-
space modes of the incident field. Further work will include
an investigation into the nature of these non-scattered modes.
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