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Eigenmode analysis of the electromagnetic field scattered by an
elliptic cone
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Abstract. The vector spherical-multipole analysis is applied a finite elliptic cone with the degenerations sector and cir-
to determine the scattering of a plane electromagnetic waveular cone) can serve as a reference for numerical com-
by a perfectly electrically conducting (PEC) semi-infinite el- putations. Scattering by circular and (less often) by ellip-
liptic cone. From the eigenfunction expansion of the totaltic cones have been treated by many authors in the litera-
field in the space outside the elliptic cone, the scattered fature. Summaries on the different approaches can be found
field is obtained as a multipole expansion of the free-spacen Bowman et al(1987); Klinkenbusch(2007. This paper
type by a single integration over the induced surface cur-starts with a description of sphero-conal coordinates which
rents. As for the evaluation of the free-space-type expansiomre used to describe the elliptic cone geometry. For an inci-
it is necessary to apply suitable series transformation techelent plane electromagnetic wave the exact total field outside
niques, a sufficient number of eigenfunctions has to be conand the corresponding surface current on the elliptic cone are
sidered. The eigenvalues of the underlying two-parametricdetermined by a spherical-multipole (eigenfunction) expan-
eigenvalue problem with two coupled Lénequations be- sion based on suitable solutions of the scalar homogeneous
long to the Dirichlet- or the Neumann condition and can beHelmholtz equation. The far field is then found as a free-
arranged as so-called eigenvalue curves. It has been observefdace type spherical-multipole expansion from an integra-
that the eigenvalues are in two different domains: In the firsttion over the surface current. In sphero-conal coordinates
one Dirichlet- and Neumann eigenvalues are either nearly cothe solution of the scalar Helmholtz equation leads to a two-
inciding, while in the second one they are strictly separatedparametric eigenvalue problem with two coupled léadif-

The eigenfunctions of the first (coinciding) type look very ferential equations, that is, the differential equations of the
similar to free-space modes and do not contribute to the scatperiodic and of the non-periodic La&rfunctions. The two
tered field. This observation allows to significantly improve separation parameters can be arranged on so-called eigen-
the determination of diffraction coefficients. value curves on which the Dirichlet- and Neumann eigenval-
ues are discretely distributed. It turns out that the numeri-
cal determination of some of these eigenvalues is difficult,
however, as will be shown exactly these eigenvalues do not
significantly contribute to the scattered far field and can be

Electromagnetic scattering by a PEC elliptic cone is of praC_automatically sorted out. Finally, this procedure leads to an
improved accuracy in determining the scattering coefficient

tical importance for several reasons. First, the geometry in- )
cludes a tip, and the related tip-diffraction coefficient could magnitudes and phases.
be used to improve asymptotically valid methods like GTD

and UTD in describing scattering by complex electrically

large systems. Second, as the geometry can be treated mostly

analytically using sphero-conal coordinates and the vector

spherical-multipole expansion, the obtained results (e.g., for
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AV (r)+x°W(r)=0 (5)
wherex = w,/ue denotes the wave number. A first separa-
tion ansatz

Y (r,9,¢) =R(r)Y (¥,¢) (6)

with a first separation constantv + 1) leads to the differen-
tial equation of the spherical Bessel functions with solutions
zy(kr) and to the eigenvalue equation of surface spherical
harmonics which are referred to as Laiproducts in case of
sphero-conal coordinates

(r x V)?Y,(9,¢) +v(v+ 1Y, (9,9) =0 (7)
Fig. 1. Sphero-conal coordinate surfaces.
For the given problem it is necessary to have solutions which

are (at least) 2 — periodic ing and fulfill canonical boundary

2 Sphero-conal coordinates conditions at? = 9
Sphero-conal coordinates®, ¢ are related to Cartesian co- Dirichlet condition: Yo (3,9)|9=p, =0 (8)
ordinates byBoersma and Jansglf90 Y+ (9, 9)

_ Neumann condition:———- = 9)
Xx =rSsiny cosp v ¥=00
y=r~/1—k?cog¥sing (1) A second separation ansatz of the form

_ _2qj
7= rcos&m Y, (8,0) =0,(0)P,(p) (10)

The ranges of the values are<0- < o0, 0<¥ <m, 0<
¢ < 27 and the ellipticity parametefsandk’ satisfy with a second separation constangields two ordinary dif-

, o .2 ferential equations:
O0<k,k'<l, k“°4+k°=1 2

The coordinate surfaces are shown in Fig. The elliptic \/1—k’23in2<ﬂdi (\/1—k’23in2<ﬂdd®v)
cone is identical to the coordinate surfate- 9 and can be ¢ ¢
characterized by the half opening angtgs= 9 and?, = + [A —v(v+ 1)k’zsin2<p] ®,=0 (112)
arccoskcosdg). The normalized metric scaling coefficients

are given by

d do
V1—k2co29 — [ v1—k2co2y —
dv 2

1‘ or \/kzsinzl?—i-k’ZCOS?w 3) d

Sy =——| =

7= g 1—k2co2y +[u(v+1)(1—k2co§z9)—x]®v=o (12)
257 Zood Equation (1) is referred to as the differential equation of

s :} r|_ [k°sITY +kFcos’p 4)  the periodic Laré functions®, (¢) while Eq. (L2) represents

YT rlde 1—k2sirtg the differential equation of the non-periodic Larfunctions

Note that the elliptic cone includes several interesting de-Ov(?)- The periodic Laré functions can be described as in-
generations: Fok = 1 the elliptic cone turns into a circu- finite Fourier series and the non-periodic Lafnctions are

lar cone whileso = 7 describes a plane angular sector with gxpanded into infinite series using associated Legendre func-

half-opening angle arccgs. tlons.of th.e 1st kindBoersma and Jans;elQQ(_). In case of .
solutions in the free unbounded space the eigenvalues are in-

tegers ¢ =n=1,2,3,..), the series become finite, and con-

3 Eigenfunction expansion of the total field sequently the solutions turn into periodic and non-periodic
Lameé polynomialsd,,,, (¢) and®,,,, (1), respectively.

In a linear, homogeneous, and isotropic domain outside the For a given value of and of the parametdi? the cor-

e”lpth cone the total electromagnetic field can be derived aﬁesponding second Separation constacan be numerica”y

a multipole (eigenfunction) expansion in sphero-conal coor-determined. The resulting, 1)-pairs lie on characteristic

dinates which is based on the corresponding solution of thesjgenvalue curves sorted by numbers-0,1,2, ... Any arbi-

scalar homogeneous Helmholtz equation trary pair of eigenvalue@, 1) lying on the eigenvalue curves
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1800 — with 7 = r /r denoting the unit vector and= w /g1 being
toooll_2 orniet ) the wave number in the free space. The transverse vector
. functions are defined as
[
1400( ®f 10Y,(0,0)» 10Y,(0,¢0) .
00 my(hg) = —— Ty S TP, (17)
1200+ ®®®z @4 S(ﬂ Bgo S o
0®% _o® 10Y,(0,¢) A 10Y,(9,¢) .
5 1000¢ ®z®®§§®g— n,(%,¢) = —”—‘pz?+—v—(p (18)
®®®®®§®®§gx 59 8(/) S(p v
800F 8% 98250200 . . . . .
®§®®§§g§§g%6%xo and the electric and magnetic multipole amplitudes are given
® ® %O*~ox . . .
600] ®®®®§®®§W<’§%§o@% by a, andb., respectively. Note that the indicesand t
209,08 e <O
®§§§gg§§%§‘§%§§ggfgfoxoxo; symbolize the Dirichlet- and Neumann conditions as defined
oo §%3%@%@%%50%%%50@535335 in Egs. @) and Q) to ensure the vanishing of the tangential
XOXOX 7 xxO<OX . . . e .
200" 0000 00000 electric field on the surface of the PEC elliptic cone. The in-
X OXOXOX XOXOXOXOXOXOX . . . . . .
e A cident plane wave is realized by locating a Hertzian dipole at
0 R e Q) XOXQ) XOXOXOXOXOXOXQXOXOXOXO: . .. . . . . .
0 5 10 15 20 25 30 35 40 infinity and multiplying the resulting field by an appropriate

v factor Blume and Klinkenbuschl999. For a plane wave
with amplitudeEo incident from(6"¢, ¢'"°) and electrically
polarized in the directiod, the multipole amplitudes of the

Fig. 2. Eigenvalue curves(v) for k2 = 0.5 with Dirichlet eigenval- ‘
total field are found as

ues (x) and Neumann eigenvalues) (

ej(a+1)7
as =4nEg [ns-C] (19)

. . . . o(oc+1)

leads to a valid solution of the eigenvalue equation of the ST
Lamé products Eq.®). Additional Dirichlet- and Neumann Be = Ege z -C] (20)

boundary conditions imposed upon the non-periodic &am o Z t(t+1 L

functions@v atdgresultin a Qiscrete spe(_:trum of eigenvalue where Z = /Jio/%0 is the intrinsic impedance of the free

pairs (vi,A;) (i =1,2,3,..) lying on the eigenvalue curves. space.

Figure 2 exemplarily shows the eigenvalue curves with dis-

crete Dirichlet- and Neumann eigenvalues. Due to the Sturm-

Liouville properties of the La differential equations the 4 Spherical-multipole expansion of the scattered field

discrete Dirichlet- and Neumann eigenvalues strictly must al-

ternate on the eigenvalue curv@grsma and Jansgr990. The scattered field is determined from the surface current
Outside the PEC elliptic cone the total electromag- Js=—0x Ht0t|190 on the cone’s surface by

netic field can be expressed in the form of a spherical-

multipole (eigenfunction) expansioBffatton 1941, Blume  E(r) =/Fo(r,r/)~JS(r’)dv/ (21)
and Klinkenbusch1999 v
V4 where the dyadic Green'’s function of the free space in bilin-
tot, .\ _
E7(r) = ;“UN“(")JF 7beMf(r) (13)  carform is deduced as
tot, .\ _ J To(r.r') = (22)
H\(r) = E;aaMg (r>+beNf(r) (14)

N ONG WD - ML (OM L, ()
nn+1) Z nn+1)

i3
where the expansion functions which are referred to as the ™™
vector spherical-multipole functions can be derived from the at 3 time-factore/®! the upper indice$ and/ I stand for the
elementary solutions of the scalar homogeneous Helmholtgse of spherical Bessel functions of the first king £ j,)
equationd, (r) by and of spherical Hankel functions of the second kingd=£
hflz)), respectively. It has been showklihkenbusch 2006
that the scattered electric far field can be written in form of a

n,m

M,(r) = (rxV)¥,(r)

= zy(kr)m, (9, ¢) (15)  multipole expansion
1
Ny(r) = —[Vx(rx V)]V, (r) E(r)=
K .
Zy(kT) A e /Y _ sc :n stc n+1 23
= - nm+ DY, (0.9)F Y@ MY b S | (23)
Kr kr n,m wom J
1d
——d—[rz,,(lcr)]nv(ﬂ,(p) (16) with the multipole amplitudes
Kr ar
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Fig. 3. Partial sum sequence of the real part of the scattering Coef'F|g 4. Detailed view of the eigenvalue curves of Larfunctions

ficient Dgy for the maximum order ofimax=40. Dotted curve is
original partial sum sequence, dashed curve is singl@@dsans-
formed sequence and solid curve is doubledEesransformed se-

guence.
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for k2 = 0.5 with Dirichlet- (x) and Neumannd| eigenvalues.

Finally, the scattered far field can be written as a function of
the incident field by means of a scattering matrix as

Ey(0.9)\ _ e’ ( Doy Dy ) ( E§°0".¢)
¢ O Kr 00 Dog o O

While the series in Eqs268) and @5) converge and yield
stable multipole amplitudes of the scattered field, the result-
ing series in Eg.43) do not converge. In order to obtain a
meaningful limiting value it is necessary to apply a suitable
sequence transformation. In contrast to nonlinear techniques
(like the Shanks transform) linear sequence transformations
always yield consistent results. For the linear &edrans-
form the transformed partial sum sequengeis obtained
from the original partial sum sequenggby

= So+s1+s2+... 45y
ne n+1

, n=0,12,. (27)

The sequence transformation can be repeatedly applied to
enforce faster convergence of the resulting partial sum se-
quence. Figur@ shows the double transformed partial sum
sequence of the scattering coefficdhy as a function of

n. Clearly, a higher order of the original series and hence a
higher number of eigenvalues is desired to obtain more ac-
curate results. In order to increase the maximum number of
available eigenvalues and eigenfunctions it is necessary to in-
vestigate the relevance of eigenvalues and eigenmodes which
will be sketched in the following section.

5 Eigenmode analysis

In Fig. 2 it has been shown that the discrétex)-pairs ar-
ranged in an eigenvalue-curve scheme which can approxi-
mately be divided into an upper region where Dirichlet- and
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Fig. 5. Sequence of non-periodic Lanfunctions®,, () to the

Dirichlet boundary condition atg = 160°, k2 =

0.5 (left column)

and (corresponding) non-periodic Lamolynomials®,, (¢) (right
column), each as function of the arguments.

We observe that for nearly integral eigenvalues of the non-
periodic Lang functions not only their values & are van-
ishing but also their derivatives. Moreover, these eigenfunc-
tions look very similar to the corresponding non-periodic
Lamé polynomials. At non-integral eigenvalues only the
values of the non-periodic La@nfunctions vanish but not
their derivatives, and their curves are different from the cor-
responding non-periodic La@npolynomials, at least in the
vicinity of the boundarie® =0 and® = . This general be-
havior is typical and can be observed for any other eigenvalue
as well.

Due to numerical reasons, the computation of the nearly
integral eigenvalues and -functions turns out to be difficult.
However, as we can deduce from the representations of the
multipole amplitudes Eqs26) and @5) the modes belong-
ing to these eigenvalues do not significantly contribute to the
scattered far field. Each part of Eq&4) and @5) has a factor
of one of the following forms

O (Vo)
dOs ()

do D)

Clearly, if both function and derivative of a non-periodic
Lamé function are small afp, the corresponding scattering
mode is also small compared to the other scattering modes.
In other words, these eigenmodes of the PEC cone do not sig-
nificantly lead to a surface current on the cone, or, the cone
is nearly invisible for these eigenmodes. Consequently, they
are very similar to free-space modes, which are characterized
by integral eigenvalues.

Following this observation, these nearly-integral eigenval-
ues and eigenfunctions don’t need to be exactly calculated,
and the modified algorithm allows to calculate much more
relevant eigenvalues and eigenfunctions to come to more ac-
curate scattering coefficients.

Neumann eigenvalues nearly coincide and into a lower re-
gion where Dirichlet- and Neumann eigenvalues are strictly® Scattering coefficients
separated. Figuréshows a closer view of this phenomenon
revealing that the coinciding eigenvalues all are very near td-igure 6 shows the amplitude and the phase of the electric
integral values (integers) of Since the numerical computa- far field scattered by a PEC semi-infinite elliptic cone illumi-
tion of these coinciding eigenvalues turns out to imply somenated by a plane wave electrically polarized in the xz plane
numerical difficulties limiting the maximum number of com- and incident fromp'"® = 105, ¢"®=0°. The amplitude of
putable eigenvalues we will now investigate that case in morghe scattering coefficierdyy is shown for the maximum or-
detail. der nmax= 40 including the integral-eigenvalue modes and
The left column in Fig5 shows a sequence of plots of non- #max= 60 excluding these non-contributing modes. The
periodic Lan& functions each satisfying the Dirichlet bound- comparison between the phases shows marginal differences,
ary condition aty = 160° as a function of the argument however, the differences in amplitudes reveal the improve-
In the right column we see plots of the non-periodic leam Ment of the results by considering more relevant eigenmodes.
polynomials (with integral eigenvalues=n) at (z, A)-pairs Finally, Fig. 7 proves that the errors of amplitudes and
on the same eigenvalue curve nearest by those ones of thghases of the scattering coefficient are actually marginal
corresponding non-periodic Lanfunctions. when all of the near-integer eigenvalues are neglected.
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Fig. 6. Amplitude and phase of the scattering coefficiBgp in the xz plane of a PEC semi-infinite elliptic cone with the half opening angles
ay =45°, ay =60° for the order of the multipole expansioR3) nmax= 40 (dashed line) andmax= 60 (solid line). The plane wave is
incident fromp'"¢ = 105, ¢'"¢ =0°.
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Fig. 7. Amplitude and phase of the scattering coeffici®gy (dashed line) in the xz plane of a PEC semi-infinite elliptic cone with the half
opening angles, = 45°, ay, =60° andnmax=40. The plane wave is incident froff'® = 105°, ¢'"® =0°. The solid line using the right

scale is the difference between the first amplitude (phase) resulting from all eigenvalues and the second amplitude (phase) resulting from all
eigenvalues except nearly integer eigenvalues.
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