Modeling of field singularities at dielectric edges using grid based methods
Abstract. Electric field singularities at sharp metallic edges or at a dielectric contact line can be described analytically by asymptotic expressions. The a priori known form of the field distribution in the vicinity of these edges can be used to construct numerical methods with improved accuracy. This contribution focuses on a modified Finite Integration Technique and on a Discontinuous Galerkin Method with singular approximation functions. Both methods are able to handle field singularities at perfectly electric conducting as well as at dielectric edges. The numerical accuracy of these methods is investigated in a number of simulation examples including static and dynamic field problems.