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Abstract. We analyze the sensitivity of dielectric wave- 2006 Stavrakakis et a12009. The application to 2-D eigen-
guides with respect to design parameters such as permittivityalue problems seems to be straight-forward, although only
values or simple geometric dependencies. Based on a dis few such attempts have been publishedigtyanko et al.
cretization using the Finite Integration Technique the eigen-1997 Schultschik et a).2008.

value problem for the wave number is shown to be non- A gitterent approach, the so-called sensitivity analysis of
Hermitian with possibly complex solutions even in the loss- electromagnetic systems using adjoint techniqdékdlova

less case. Never.theless, the sensitiyity can be obtained witg; al, 2004, has recently gained large interest. Starting with
negligible numerical effort. Numerical examples demon- 44 yiical differentiations of the algebraic matrix equations,
strate the validity of the approach. compact formulas can be derived for the sensitivities of out-
put quantities w.r.t. an arbitrary number of design parameters.
Adjoint techniques have been applied to various formulations
in electromagnetic modeling, but to our knowledge not yet to
2-D waveguide eigenvalue problems.

Numerical simulations of waveguide structures by finite  In this paper we apply a classical sensitivity analysis to the
methods have been used for many years, and a number @igenvalue problem arising from a 2-D FIT-discretization of
eigenvalue formulations are available, based, e.g., on the Finhomogeneous dielectric waveguides. In S@atve show
nite Integration Technique (FIWeiland 1977, or the Finite  that the system matrix is non-Hermitian, supporting com-
Element method (FE, e.§arle et al.2004. If the calcula-  plex modes also in the lossless case. This has some conse-
tions aim mainly at the analysis of port planes of originally quences for the adjoint technique to be applied which will be
3-D setups, the number of unknowns in the 2-D waveguideaddressed in Sec8, where we also discuss an efficient Al-
model is typically low, and results are available within sec- gorithmic Differentiation (AD) method for the matrix deriva-
onds. However, the situation changes for optical applicationgives. Some numerical examples in Settlemonstrate the
such as fibers or integrated waveguides, where due to thealidity and efficiency of the approach.

small wavelengths in the optical regime the problem sizes (of

the two-dimensional discrete model) sometimes exceed sev-

eral 1 unknowns. If additionally the dependencies of the

waveguide modes w.r.t. design parameters such as geomej- Waveguide eigenvalue problem using FIT

ric dimensions or material parameters are searched for, it is

desirable to have sophisticated approaches for fast parameter ) ) ) _ )
sweeps at hand. We consider a cross section of a dielectric waveguide (e.g.,

Several such approaches have been reported in the con optic_:al fiber) and use the Fi_nite I_ntegration Technique,
text of Model Order Reduction (MOR) techniques. In most FIT, Weiland 1977, 1996 for the discretization of Maxwell's

cases they are based on projections of the system matricdgduations in frequency domain. For sake of simplicity, a
by low-order projection matrices, with the frequency as theStandard Cartesian mesh is used and PEC boundary condi-

main design parameter. Recently, some effort has been taketli{)ns are imp‘?se‘?' at a distance far er_10ugh from the core re-
to extend them to the so-called multi-variate cazarle et al, gion. The derivation of the resulting eigenvalue problem has
been described in detail Weiland(1977); Schuhmann and

Weiland(200J) and is only briefly revisited here.
Correspondence ta\. Bursclapers The state variables of FIT are integral quantities which are
BY (burschaepers@tet.upb.de) defined on edges;, L; and facetsA;, A; of the primary grid
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G and the dual gri(ﬁ, respectively. These are the grid volt- Equation 0) allows to eliminate the longitudinal components

ages from the eigenvalue equation, since the expressipag well
N ~ as the material matrices can be easily inverted:
e,:/ E(r,t)-ds, h,-:/~ H(r,1)-ds, (1)
L Li &)= - M=L—P M, &x—P M., &) (10)
and the grid fluxes (omitting currents) ’ jkz F* x e Ty ey TyE
7, / D(r.1)-dA, B, _/ B(r.0)-dA. @) Finally a 2Vp x 2Np-eigenvalue problem can be derived:
A; 2
Using these definitions, Maxwell's equations (neglecting (Ag2-b — @”Bg 2 p+k31) < 3 >=0, (11)
currents and charges) are transformed into a set of matrix- Y
vector-equations for the component vectasd, h, b, Ao p = A11A12
R ~ . ~ ’ A21 Az
Ce=-job,  Ch=jod, 3) With  Agr=PMZPIMex+M,yPIM 1Py,
Sb =0, Sd =0, (4)

. . _ A12=PyM;'P{ M,y — M,y PIM TPy,
which are referred to abaxwell's Grid Equations The Ag1=P,M=PTM M..PTM-1p
matrix C is the discrete curl-operatd8 is the discrete div- 21=FyWlez ex T XX WMz ys
operator of the primary grid, arfélandC are the correspond- A =PyM_; lPTM ey + M x P{M ;ZlPX, (12)

ing operators for the dual grid. In Cartesian grid systems with M .M 0
Np primary nodes these are structured matrices, e.g. Be2-p = < X TRy ) (diagonal). (13)
0 MgyM,x
0 —P, Py ) ; ;
c=| P, 0 —P, §=(_PT _pT _pT) (5) For a fixed angular frequenay we obtain a simple, non-
Py P 0 ’ X z symmetric eigenproblertA — Al)x = 0 with the system ma-

S ~ trix A=Ag2 p—w?Bg 2 p and the eigenpair
and theNp x Np-blocksPy, Py, P, can be identified as dis- '

crete partial differentiation operatord/¢iland 1996. From B2 " ey (14)
grid topology we find the relation§C =0, SC =0 and - - )

ey
C=CT. The formulation is completed by thmaterial re-

lations (for linear media) Note thatA is non-symmetric gl;o in the Io;sless case: This
_ _ ~ P is not a property of our specific formulation but rather of
d=M.e, h=M, b. (6) the physical setting itself, since it is well-known that di-

electric waveguides may support so-called complex modes.
In the lossy case (with complex material matrices) the sys-
or magnetic losses. Their entries contain the locally aver-lem IS non-Hermitian and supports complex wave numbers

aged permittivity and permeability distribution as well as the Kz = £ — je. Actually, dielectric losses can be allowed in
metrics of the grid. the following without any restriction (except for some more

For the discretization of waveguide cross sections we usé&ortin the algebraic solver for the eigenproblem).
a two-dimensional Cartesian grid witfp = Ny - Ny primary
nodes and assume a wave propagafigd ~ ¢~/*% in z-
direction, withk;, the (unknown) wave number. Thus, the

longitudinal differential operator becomes 3.1 Eigenvalue perturbation theory
Pz=—jkl (7)

Both material matrice, andM;l are diagonal and may
be complex (in frequency domain) to account for dielectric

3 Sensitivity analysis

_ _ _ _ _ We are interested in the sensitivity of the eigensolutions with
with the identity matrix|. Note, that applying Eq.7) to respect to a number of design parameters such as geometric
(5) results in complex-valued matrices, which are only valid dimensions or permittivity values. For simplicity of notation

for one distinctk;. Besides, the transposed sub-matrices inwe restrict here to one single paramegeand calculate the
C and'S have to be replaced by the Hermitian expressionderivatives

Py = tjkal. dx d
In order to derive an eigenvalue formulation for the modes)’ = X = _X_ (15)
in such waveguide cross sections, we start with the discrete dP dp
curl-curl eigenproblem and the divergence-free condition oftpe derivation makes use of the left-eigenvectprsf the
the fields system (the eigenvector of the Hermitian mati%, hence:
CTMlleé —w?M, e (8) adjoint techniqugwith
0=Sd = —P} dx—P] dy— jk.d, © yi'A-a)=0 (16)
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and the orthonormality condition of right- and left- G : :
eigenvectorsi(j denoting the index number of the eigen- bel | |
1 L L R I B
solution) y ! | H, .
;i — 7 | | X
DHy@D — g, =1 =), 17 > . . +
Y s=lo G2 4 g CEL
« xy
Following the standard perturbation theory for eigenprob- T ‘:‘ ‘:‘ 17 :‘ T
lems (e.g.Nelson 1976 we build the derivative A, : !
d
a» {(A=2A)x=0} Fig. 1. Discrete evaluation of th& x H-based orthogonality re-
P , , , lation in the waveguide cross section. 'IEe voltages~ ExAx,
= (A =ADx+A-A)x =0. (18) oy~ EyAy and hy~ HyAy, hy~ HyAx include the lengths

Multiplying from the left by y" vields, together with which define the integration aredgy, Ayx (shaded gray).
Egs. (L6) and (L7), the desired eigenvalue sensitivity:

N =yrAx. (19)  As shown in Fig. this formula directly rebuilds the desired

Once)’ has been calculated, E4.8) defines a linear system €ross product in a Cartesian system, and the area integration
for the eigenvector derivative'. Its singularity can be eas- is implicitly included due to the integral character of the grid

ily removed using a normalization conditioNglson 1976, voltagese and .
here defined again by'x = 1. Obviously, the vector (now omitting the mode number
To summarize, the ingredients to calculate the sensitivitiedn the notation)
are ~ ~ -
hy 0 1'\[ hy hy
1. the eigensolutiofx, A} itself, properly normalized, y=\ _ hi =\ _lo ﬁ; =K ﬁ; (22)

2. the corresponding left-eigenvectpr . .
P d ¢ " seems to be the left-eigenvector we are looking for. To prove

3. the derivative of the system matrx. this assumption we can derive the eigenvalue formulation for
Hwe magnetic field components in a similar way than above
0

Note that some care must be taken in the previous steps i . . )
P P r the electric field: Starting with the curl-curl problem

case of multiple eigensolutions (degenerated modes).
187 _ 20 R
3.2 Calculation of the left-eigenvector CM,"Ch=w"M,h (23)
] -~ ) we can use the cﬂvergence-free condition for the magnetic
Unfortunately, in a non-Hermitian system as given here, theﬂuxesSE = SM,, h =0 together with Eq.7) to eliminate

I.Eft' and right eigenyectors are not identical. A Symmetriza'the longitudinalh ; components. After some calculation and
tion of the system (like, e.g., in lossless 3-D e|genproblems)a rearrangement of the matrix blocks according to 2) (
is generally not available, since this loss of symmetry is dueWe find

to the physics of inhomogeneous waveguides rather than an
inefficient formulation. (AH.2-D —®?Bp 2 p+k2)y=0
How_e\_/er, physical considerations_ again can help to avoidith An.2-D =AE ,p and Buap= Bn . (24)

an additional solver step as shown in the following. The or- ’ '

thogonality property17) between the searched left eigenvec- which proves thay is the desired left-eigenvector. Besides

tor and the original right eigenvector (the transversal electricthe nice physical interpretation of this result (the transversal

field) suggest thay may be related to the magnetic field in magnetic and electric fields of the modes constitute the left-

the guide which fulfills the continuous orthogonality relation and right-eigenvectors in this formulation), there is an even
_ ‘ more important algebraic consequence: Although the matrix

/AE(’) x HY -nydA =3§;; (20)  is non-symmetric, the left-eigenvector can be easily calcu-

i lated without any additional solver step, simply by applying
for the fields of two modesandj. It has already been shown Faraday’s law:

previously Schuhmann and Weiland001) that this type of

1 1 1 H 1 T %
orthogonality can be reproduced within the discrete settmgH _ #M‘lcé, y=K D§ . (25)
by hy
Z(E(i) R _ O 0,

s KB TS Y T Note that the z-components ia have to be calculated first
~h\T /-0 from the eigenvectax by applying Eq. {0), and this step as
_ h/y ' €x ) _ i (1) well as theC-matrix in Eqg. 5) contain the (square-root of

N é;l) Y the) eigenvalué,.
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Fig. 2. Geometric data of a waveguide with dielectric inset. Fig. 3. Sensitivity analysis with regard to the permittivity.

point operations required to evalu&ex). Using the forward
mode, one computes the required derivatives together with
the function evaluation in one sweep as illustrated above.
The forward mode yields onepolumnof the JacobiatVF at
no more than three time3g (Griewank and Walthe2008).
Onerow of VF, e.g., the gradient of a scalar-valued compo-
nent function ofF, is obtained using the reverse mode in its
"basic form also at no more than four tim@g (Griewank and
Walther, 2008. It is important to note that this bound for the
reverse mode is completely independent of the numbfr
input variables.

For the problem formulation considered here, it suffices

: : i _ to apply the forward mode. The more sophisticated reverse
and Walthe(200§ and implemented in the ADOL-C pack mode will be required for more detailed problem descriptions

age ADOL-C). It enables the differentiation w.r.t. arbitrary : :

: gy to be considered in future work.
parameters at low computational cost, once the original func-
tion has been coded in a computer program. As expected, the
results are identical up to the level of numerical noise.

Note that AD is only applied to the matrix assembly in
Egs. (1)—(13). The parameter dependency in these formu-we apply our algorithm to the fundamental modes in two
las is considered as a functiéh: R" — R™, y =F(x) de-  inhomogeneous dielectric waveguides, where the permit-
scribing an algebraic mapping froki' to R™ and should be tivity distributions are given by simple one-dimensional
defined by an evaluation procedure in a high-level computeparametrized models. Goal quantities are the wave number
language like Fortran or C. The technique of algorithmic dif- ;o the effective refractive index, = k,/ ko, respectively.
ferentiation, also called automatic differentiation, provides|n poth cases their sensitivities have to be derived by a sim-
derivative information of arbitrary order for the code seg- pe post-processing step from the derivative of the eigenvalue
ment in the computer that evaluates) within working ac- ) — _x2 parameter sweeps serve as a reference for the sen-
curacy. For this purpose, the basic differentiation rules suchyitivities. Note that the dimension of the system matrices has

as, the product rule, the quotient rule etc., are applied to eachg influence on the performance and accuracy of the sensi-
statement of the given code segment. This local derivativgiyity analysis.

information is then combined by the chain rule to calculate

the overall derivatives. Hence the code is decomposed int@.1 \Waveguide with dielectric inset

a long sequence of simple evaluations, e.g., additions, mul-

tiplications, and calls to elementary functions such aé$in  Figure 2 shows the FIT 2-D computational grid and the ge-

or exp(x), the derivatives of which can be easily calculated. ometry of a waveguide with dielectric inset. The parameter

Exploiting the chain rule yields the derivatives of the whole of the model is the relative permittivity = 1 /¢ of the di-

sequence of statements with respect to the input variables. electric inset, and we calculate the wave numép). Fig-
Over the past decades, extensive research activities led tare3 shows the results from a parameter sweep together with

a thorough understanding of AD and its two basic modes,atangent on this curve which visualizes the first order deriva-

the forward and the reverse mode. The complexity estimatetive of the eigenvalue at the expansion point. Note that this

for these approaches to compute derivative information aresensitivity is available after only one run of the eigensolver

based on the operation coudt, i.e., the number of floating and negligible additional cost.

3.3 Calculation of the matrix derivative

The next step is the calculation of the matrix derivative
A= %A in Eq. @9). We have implemented two variants:
The first one depends on the type of parametemnd may
only be available for simple constellations. If, e.g., the design
parameter is related to the permittivity within the waveguide
the dependency of the material operatby(p) in Egs. (L2)
and (L3) can be analyzed by analytical differentiation, and
the main task is to provide for an efficient implementation.
As a more general approach we also apply an Algorith-
mic Differentiation (AD) algorithm as described@riewank

4 Numerical examples
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16 = 504 w ond order derivatives. Following the ideas presented above,

12 8 ‘ their calculation is straight-forward, provided that the differ-
g . H 152 ! entiability of the operators involved is assured. The required
= g ! second order matrix derivatives can again be obtained from

< . . . .

4 = g 5 ! the AD approach. Either second order derivatives or multiple

‘ = ‘ first order derivatives at different expansion points may be

0 4 a 1216 0 4 a 12 used to attain broadband estimations of the parameter depen-
X (um) Radius p (um)

dencies. Especially if applied to the frequency as parameter.

Fig. 4. Grid model and index profile of the graded index waveguide. thiS clearly is another link to related MOR approaches and

the discussion on single- or multipoint approximations.
Finally, the sensitivity results can be very useful in opti-

<5 1503 o h mization processes. Especially when derived for more than
C C . . . . . . .

B o0 © ©.© a single design parameter, the existing implementation will

=1 o - . .

3 1s2f o , | benefit from the generality of the AD approach.

= o

£ o o Parameter sweep

21520 F o Sensitivity 1 References

o O % E . .

s} o Xpansion point
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4 6 8 ) 10 12 14 of C and C++ programshttps://projects.coin-or.org/ADOL-C
Core radius a (jm) maintained by A. Walther, last access: 14 December 2010.
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Some issues to be addressed in future work are the follow-

ing: Although the result curves shown here are quite smooth

(suggesting that the wave number depends only weakly on

the design parameters), it might be desirable to have also sec-

Fig. 5. Sensitivity analysis of.s(a) in the graded index guide.

4.2 Graded index waveguide
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