Helfert, S. F. and Pregla, R.: The method of lines: a versatile tool for the analysis of waveguide structures, Electromagnetics, 22, 615–637, invited paper for the special issue on "Optical wave propagation in guiding structures", 2002.
Helfert, S. F., Edelmann, A., and Jahns, J.: Hollow waveguides as polarization converting elements, in: Europ. Opt. Soc. ann. meet. (EOSAM), p. TOM5 S02: Subwavelength device, Berlin, Germany, 2014.
Helfert, S. F., Edelmann, A., and Jahns, J.: Hollow waveguides as polarization converting elements: a theoretical study, J. Europ. Opt. Soc.: Rap. Publ., 10, 15006, 1–7, 2015.
MATLAB: version 8.4 (R2014b), The MathWorks Inc., Natick, Massachusetts, 2014.
Mittra, R. and Pekel, Ü.: A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves, IEEE Microwave Guided Wave Lett., 5, 84–86, 1995.
Pregla, R.: MoL-BPM Method of lines based beam propagation method, in: Methods for modeling and simulation of guided-wave optoelectronic devices (PIER 11), edited by: Huang, W. P., Progress in Electromagnetic Research, 51–102, EMW Publishing, Cambridge, Massachusetts, USA, 1995.
Pregla, R.: Novel FD-BPM for optical waveguide structures with isotropic or anisotropic material, in: Europ. Conf. Int. Opt. (ECIO), 55–58, Torino, Italy, 1999.
Pregla, R.: Analysis of electromagnetic fields and waves - The method of lines, Wiley & Sons, Chichester, UK, 2008.
Pregla, R. and Pascher, W.: The method of lines, in: Numerical techniques for microwave and millimeter wave passive structures, edited by: Itoh, T., 381–446, J. Wiley Publ., New York, USA, 1989.
Rappaport, C. M.: Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space, IEEE Microwave Guided Wave Lett., 5, 90–92, 1995.
Rogge, U. and Pregla, R.: Method of lines for the analysis of dielectric waveguides, J. Lightwave Technol., 11, 2015–2020, 1993.
Sacks, Z. S., Kingsland, D. M., Lee, R., and Lee, J.-F.: A perfectly matched anisotropic absorber for use as an absorbing boundary, IEEE Trans. Antennas. Propagation, 43, 1460–1463, 1995.
Schneider, V. M.: Analysis of passive optical structures with an adaptive set of radiation modes, Opt. Comm., 160, 230–234, 1999.
Strang, G.: Linear algebra and its applications, Saunders HBJ College Publishers, Orlando, Fl., USA, 3rd edn., 130–138, 1986.
Sudbø, A. S.: Film mode matching: A versatile method for mode field calculations in dielectric waveguides, Pure Appl. Opt., 2, 211–233, 1993.
Sztefka, G.: A bidirectional propagation algorithm for large refractive index steps and systems of waveguides based on the mode matching method, in: OSA Integr. Photo. Resear. Tech. Dig., 134–135, New Orleans, Louisiana, USA, 1992.
Taflove, A.: The finite-difference time–domain method, Computational electrodynamics, Artech house, inc, Norwood, MA, 1995.
Vassallo, C. and Collino, F.: Comparison of a few transparent boundary bonditions for finite-difference optical mode-solvers, J. Lightwave Technol., 15, 397–402, 1997.
Werner, D. H. and Mittra, R.: A new field scaling interpretation of Berenger's PML and its comparison to other PML formulations, Microw. Opt. Tech. Lett., 16, 103–106, 1997.