Towards a generic operational amplifier with dynamic reconfiguration capability
Abstract. Analog and analog-digital mixed signal electronics needed for sensor systems are indispensable components which tend to drifts from the normal phase of operation due to the impact of manufacturing conditions and environmental influences like etching, aging etc. Precise design methodology, trimming / calibration are essential to restore functionality of the system. Recent block level granular approaches using Field Programmable Analog Array and the more recent approaches from evolutionary electronics providing transistor level granularity using Field Programmable Transistor Arrays offers considerable extensions. In our work, we started on a new medium granular level approach called Field Programmable medium-granular Mixed-signal Array (FPMA) providing basic building blocks of heterogeneous array of active and passive devices to configure established circuit structures which are adaptive, biologically inspired and dynamically re-configurable. Our design objective is to create components of clear compatibility to that of the industrial standards having predictable behavior along with the incorporation of existing design knowledge. The cells can be used in as a single instance or multiple instances. Further, we will focus on a generic dynamic reconfigurable amplifier cell with flexible topology and dimension called Generic Operational Amplifier (GOPA). The incentive of our work comes from recent development in the field of measurement and instrumentation. The digital programming of analog devices is carried out using range of algorithms from simple to evolutionary. Physical realization of the basic cells is carried out in 0.35 μm CMOS technology.