Articles | Volume 13
https://doi.org/10.5194/ars-13-197-2015
https://doi.org/10.5194/ars-13-197-2015
03 Nov 2015
 | 03 Nov 2015

Statistical sensor fusion of ECG data using automotive-grade sensors

A. Koenig, T. Rehg, and R. Rasshofer

Related authors

A machine learning joint lidar and radar classification system in urban automotive scenarios
Rodrigo Pérez, Falk Schubert, Ralph Rasshofer, and Erwin Biebl
Adv. Radio Sci., 17, 129–136, https://doi.org/10.5194/ars-17-129-2019,https://doi.org/10.5194/ars-17-129-2019, 2019
Short summary
Virtual sensor models for real-time applications
Nils Hirsenkorn, Timo Hanke, Andreas Rauch, Bernhard Dehlink, Ralph Rasshofer, and Erwin Biebl
Adv. Radio Sci., 14, 31–37, https://doi.org/10.5194/ars-14-31-2016,https://doi.org/10.5194/ars-14-31-2016, 2016
Short summary

Cited articles

ADAC e.V.: Müdigkeit im Straßenverkehr – unterschätzt, verkannt, tödlich, Artikelnummer 2831141, available at: www.adac.de/infotestrat/ratgeber-verkehr, 2014.
Boucsein, W.: Electrodermal measurement, in: Handbook of human factors and ergonomics methods, edited by: Stanton, N., Hedge, A., Brookhuis, K., Salas, E., and Hendrick, H., London, CRC Press, 2005, 18-11–18-18, 2005.
Carrol, D., Turner, J. R., and Prasad, R.: The effects of level of difficulty of mental arithmetic challenge on heart rate and oxygen-consumption, Internat. J. Psychophysiol., 4, 167–173, 1986.
Dawson, M. E., Schell, A. M., and Filion, D. L.: Handbook of Psychophysiology, 3rd Edn., 2007.
Feldman, J. M., Ebrahim, M. H., and Bar-Kana, I.: Robust Sensor Fusion Improves Heart Rate Estimation: Clinical Evaluation, J. Clin. Monit., 13, 379–384, 1997.