Articles | Volume 14
https://doi.org/10.5194/ars-14-47-2016
https://doi.org/10.5194/ars-14-47-2016
28 Sep 2016
 | 28 Sep 2016

Implementation of a digital evaluation platform to analyze bifurcation based nonlinear amplifiers

Sven Feldkord, Marco Reit, and Wolfgang Mathis

Abstract. Recently, nonlinear amplifiers based on the supercritical Andronov–Hopf bifurcation have become a focus of attention, especially in the modeling of the mammalian hearing organ. In general, to gain deeper insights in the input-output behavior, the analysis of bifurcation based amplifiers requires a flexible framework to exchange equations and adjust certain parameters. A DSP implementation is presented which is capable to analyze various amplifier systems. Amplifiers based on the Andronov–Hopf and Neimark–Sacker bifurcations are implemented and compared exemplarily. It is shown that the Neimark–Sacker system remarkably outperforms the Andronov–Hopf amplifier regarding the CPU usage. Nevertheless, both show a similar input-output behavior over a wide parameter range. Combined with an USB-based control interface connected to a PC, the digital framework provides a powerful instrument to analyze bifurcation based amplifiers.

Download
Short summary
Recently, nonlinear amplifiers based on the Andronov–Hopf bifurcation have become a focus of attention in modeling of the mammalian hearing organ. We present a flexible framework implemented on a DSP to analyze various bifurcation based amplifiers to get deeper insights in their nonlinear input-output behavior. A comparison shows the Neimark–Sacker amplifier remarkably outperforms the Andronov–Hopf amplifier regarding the CPU usage.