Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q., and Wang, H.: PP-OCR: A Practical Ultra Lightweight OCR System, CoRR, arXiv [preprint],
https://doi.org/10.48550/arXiv.2009.09941, 21 September 2020.
a
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, in: KDD'96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 2–4 August 1996, Portland, USA, AAAI Press, vol. 96, 226–231,
https://dl.acm.org/doi/proceedings/10.5555/3001460 (last access: 28 November 2024), 1996.
a,
b
Günay, M., Köseoğlu, M., and Yıldırım, Ö.: Classification of hand-drawn basic circuit components using convolutional neural networks, in: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 26–28 June 2020, Ankara, Turkey, IEEE, 1–5,
https://doi.org/10.1109/HORA49412.2020.9152866, 2020.
a
Gupta, A., Vedaldi, A., and Zisserman, A.: Synthetic data for text localisation in natural images, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 27–30 June 2016, Las Vegas, USA, IEEE, 2315–2324,
https://doi.org/10.1109/CVPR.2016.254, 2016.
a
Hemker, D., Kreutter, S., and Mathis, H.: On Reducing Complexity in AI Pipelines: Modularisation to Retain Control, ERCIM News 133, ERCIM EEIG, BP 93, Sophia Antipolis Cedex, France,
https://ercim-news.ercim.eu/images/stories/EN133/EN133-web.pdf (last access: 28 November 2024), 2023. a
Henderson, P. and Ferrari, V.: End-to-end training of object class detectors for mean average precision, in: Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016, Revised Selected Papers, Part V 13, Springer, 198–213,
https://doi.org/10.1007/978-3-319-54193-8_13, 2017.
a
JaidedAI: EasyOCR, GitHub [code],
https://github.com/JaidedAI/EasyOCR (last access: 20 January 2024), 2023. a
Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V. R., Lu, S., Shafait, F., Uchida, S., and Valveny, E.: ICDAR 2015 competition on Robust Reading, in: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), 23–26 August 2015, Nancy, France, 1156–1160,
https://doi.org/10.1109/ICDAR.2015.7333942, 2015.
a
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.: Microsoft coco: Common objects in context, in: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part V 13, Springer, 740–755,
https://doi.org/10.1007/978-3-319-10602-1_48, 2014.
a
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C.: Ssd: Single shot multibox detector, in: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, 11–14 October 2016, Proceedings, Part I 14, Springer, 21–37,
https://doi.org/10.1007/978-3-319-46448-0_2, 2016.
a,
b
Mindee: docTR: Document Text Recognition, GitHub [code],
https://github.com/mindee/doctr (last access: 15 January 2024), 2021. a
Mohan, A., Mohan, A., Indushree, B., Malavikaa, M., and Narendra, C.: Generation of Netlist from a Hand drawn Circuit through Image Processing and Machine Learning, in: 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), 12–14 February 2022, Vijayawada, India, IEEE, 1–4,
https://doi.org/10.1109/AISP53593.2022.9760577, 2022.
a
OpenCV: Open Source Computer Vision Library, GitHub [code],
https://github.com/opencv/opencv (last access: 28 November 2024), 2023.
a,
b
Pdfminer.six: Pdfminer.six, GitHub [code],
https://github.com/pdfminer/pdfminer.six (last access: 16 January 2024), 2023. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
a,
b
Sertdemir, A. E., Besenk, M., Dalyan, T., Gokdel, Y. D., and Afacan, E.: From Image to Simulation: An ANN-based Automatic Circuit Netlist Generator (Img2Sim), in: 2022 18th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 12–15 June 2022, Villasimius, Italy, IEEE, 1–4,
https://doi.org/10.1109/SMACD55068.2022.9816254, 2022.
a
Tkachenko, M., Malyuk, M., Holmanyuk, A., and Liubimov, N.: Label Studio: Data labeling software, GitHub [code],
https://github.com/heartexlabs/label-studio (last access: 20 November 2024), 2022. a
Ultralytics: YOLOv5: A state-of-the-art real-time object detection system,
https://docs.ultralytics.com (last access: 16 January 2024), 2021. a
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18–22 June 2023, Vancouver, Canada, 7464–7475,
https://doi.org/10.1109/CVPR52729.2023.00721, 2023.
a,
b
Zhou, Y., Qi, H., and Ma, Y.: End-to-end wireframe parsing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 27 October–2 November 2019, Seoul, South Korea, IEEE, 962–971,
https://doi.org/10.1109/ICCV.2019.00105, 2019.
a,
b