IRI the International Standard for the Ionosphere
George Mason University, Department of Physics and Astronomy, Fairfax,
Virginia, USA
NASA, Goddard Space Flight Center, Heliospheric Laboratory, Greenbelt,
Maryland, USA
Related authors
Steven Brown, Dieter Bilitza, and Erdal Yiğit
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-97, https://doi.org/10.5194/angeo-2018-97, 2018
Preprint withdrawn
Short summary
Short summary
The ionosphere varies the most over the Northern hemisphere. This is called the
annual anomaly. Ionospheric models, such as the International Reference Ionosphere (IRI), underrepresent the anomaly. The ionosphere affects radio waves, so it is important to always improve these models. We show that it is considering the ionosphere's hemispheric behavior is required to improve IRI. We suggest that the annual anomaly is caused by processes which differ over each hemisphere.
D. Bilitza
Adv. Radio Sci., 12, 231–236, https://doi.org/10.5194/ars-12-231-2014, https://doi.org/10.5194/ars-12-231-2014, 2014
Steven Brown, Dieter Bilitza, and Erdal Yiğit
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-97, https://doi.org/10.5194/angeo-2018-97, 2018
Preprint withdrawn
Short summary
Short summary
The ionosphere varies the most over the Northern hemisphere. This is called the
annual anomaly. Ionospheric models, such as the International Reference Ionosphere (IRI), underrepresent the anomaly. The ionosphere affects radio waves, so it is important to always improve these models. We show that it is considering the ionosphere's hemispheric behavior is required to improve IRI. We suggest that the annual anomaly is caused by processes which differ over each hemisphere.
D. Bilitza
Adv. Radio Sci., 12, 231–236, https://doi.org/10.5194/ars-12-231-2014, https://doi.org/10.5194/ars-12-231-2014, 2014
Cited articles
Abdu, M., Souza, J., Batista, I., and Sobral, J.: Equatorial spread F statistics
and empirical representation for IRI: a regional model for the Brazilian longitude sector,
Adv. Space Res., 31, 703–716,
https://doi.org/10.1016/S0273-1177(03)00031-0, 2003.
Altadill, D., Torta, J. M., and Blanch, E.: Proposal of new models of the bottom-side
B0 and B1 parameters for IRI, Adv. Space Res., 43, 1825–1834,
https://doi.org/10.1016/j.asr.2008.08.0144, 2009.
Altadill, D., Magdaleno, S., Torta, J. M., and Blanch, E.: Global empirical
models of the density peak height and of the equivalent scale height for
quiet conditions, Adv. Space Res., 52, 1756–1769,
https://doi.org/10.1016/j.asr.2012.11.018, 2013.
Angling, M. J., Shaw, J., Shukla, A. K., and Cannon, P. S.: Development of
an HF selection tool based on the Electron Density Assimilative Model
near-real-time ionosphere, Radio Sci., 44, RS0A13, https://doi.org/10.1029/2008RS004022,
2009.
Bilitza, D.: Electron density in the D-region as given by the International
Reference Ionosphere: World Data Center A for Solar-Terrestrial Physics, Report UAG-82,
7–11, 1981.
Bilitza, D.: Electron density in the equatorial topside, Adv. Space Res., 5,
15–19, https://doi.org/10.1016/0273-1177(85)90174-7, 1985.
Bilitza, D.: International Reference Ionosphere: Recent Developments, Radio
Sci., 21, 343–346, https://doi.org/10.1029/RS021i003p00343, 1986.
Bilitza, D.: International Reference Ionosphere 1990, National Space Science
Data Center, Report 90-22, Greenbelt, Maryland, USA, 1990.
Bilitza, D.: International Reference ionosphere – Status 1995/96, Adv. Space
Res., 20, 1751–1754, 1997.
Bilitza, D.: International Reference Ionosphere 2000, Radio Sci., 36,
261–275, https://doi.org/10.1029/2000RS002432, 2001.
Bilitza, D. and Reinisch, B. W.: International Reference Ionosphere 2007:
Improvements and new parameters, Adv. Space Res., 42, 599–609,
https://doi.org/10.1016/j.asr.2007.07.048, 2008.
Bilitza, D., Sheik, N., and Eyfrig, R.: A global model for the height of the
F2-peak using M3000 values from the CCIR numerical map, Telecomm. J.,
46, 549–553, 1979.
Bilitza, D., Bhardwaj, S., and Koblinsky, C.: Improved IRI predictions for
the GEOSAT time period, Adv. Space. Res., 20, 1755–1760,
https://doi.org/10.1016/S0273-1177(97)00585-1, 1997.
Bilitza, D., Radicella, S., Reinisch, B., Adeniyi, J., Mosert, M., Zhang, S., and Obrou, O.:
New B0 and B1 models for IRI, Adv. Space. Res. 25, 89–95,
https://doi.org/10.1016/S0273-1177(99)00902-3, 2000.
Bilitza, D., Brown, S. A., Wang, M. Y., Souza, J. R., and Roddy, P. A.:
Measurements and IRI Model Predictions during the Recent Solar Minimum, J.
Atmos. Sol.-Terr. Phy., 86, 99–106, https://doi.org/10.1016/j.jastp.2012.06.010, 2012
Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P.,
McKinnell, L.-A., and Reinisch, B.: The International Reference Ionosphere
2012 – a model of international collaboration, J. Space Weather Space
Climate, 4, 1–12, https://doi.org/10.1051/swsc/2014004, 2014.
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch,
B., and Huang, X.: International Reference Ionosphere 2016: From ionospheric
climate to real-time weather predictions, Space Weather, 15, 418–429,
https://doi.org/10.1002/2016SW001593, 2017.
Blanch, E. and Altadill, D.: Midlatitude F region peak height changes in
response to interplanetary magnetic field conditions and modelling results,
J. Geophys. Res., 117, A12311, https://doi.org/10.1029/2012JA018009, 2012.
Brown, S., Bilitza, D., and Yiğit, E.: Ionosonde-Based Indices for
Improved Representation of Solar Cycle Variation in the International
Reference Ionosphere Model, J. Atmos. Sol.-Terr. Phy., 171, 137–146, https://doi.org/10.1016/j.jastp.2017.08.022, 2018.
Brunini, C., Conte, J. F., Azpilicueta, F., and Bilitza, D.: A different
method to determine the height of the F2 peak, Adv. Space Res., 51,
2322–2332, https://doi.org/10.1016/j.asr.2013.01.027, 2013.
CCIR (Consultative Committee on International Radio): Atlas of Ionospheric
Characteristics, Report 340, International telecommunication Union, Geneva,
Switzerland, 1967.
Chen, S.-P., Bilitza, D., Liu, J.-Y., Caton, R., Chang L. C. W., and Yeh,
W.-H.: An Empirical Model of L-band Scintillation S4 index Constructed by
Using FORMOSAT-3/COSMIC Data, Adv. Space Res., 60, 1015–1028,
https://doi.org/10.1016/j.asr.2017.05.031, 2017.
Clette, F., Svalgaard, L., Vaquero, J. M., and Cliver, E. W.: Revisiting the
sunspot number- A 400-year perspective on the solar cycle, Space Sci. Rev.,
186, 35–103, https://doi.org/10.1007/s11214-014-0074-2, 2014.
Danilov, A. and Yaichnikov, A.: A new model of the ion composition at 75 km
to 1000 km for IRI, Adv. Space Res., 5, 75–79,
https://doi.org/10.1016/0273-1177(85)90360-6, 1985.
Danilov, A. and Smirnova, N.: Improving the 75 km to 300 km ion composition model
of the IRI, Adv. Space Res., 15, 171–177, https://doi.org/10.1016/S0273-1177(99)80044-1, 1995.
Danilov, A., Rodevich, A., and Smirnova, N.: Problems with incorporating a new
D-region model into the IRI, Adv. Space Res., 15, 165–169, https://doi.org/10.1016/S0273-1177(99)80042-8, 1995.
Ducharme, E. D., Petrie, L. E., and Eyfrig, R.: A method for predicting the Fllayer
critical frequency based on Zurich smoothed sunspot number, Radio Sci.,
8, 837–839, https://doi.org/10.1029/RS008i010p00837, 1973.
Fridman, S. V., Nickisch, L. J., Aiello, M., and Hausman, M.: Real-time
reconstruction of the three dimensional ionosphere using data from a network
of GPS receivers, Radio Sci., 41, RS5S12, https://doi.org/10.1029/2005RS003341, 2006.
Friedrich, M. and Torkar, K.: FIRI: a semiempirical model of the lower ionosphere,
J. Geophys. Res., 106, 21409–21418,
https://doi.org/10.1029/2001JA900070, 2001.
Fuller-Rowell, T. J., Araujo-Pradere, E., and Codrescu, M. V.: An empirical
ionospheric storm-time correction model, Adv. Space Res., 25, 139–146, https://doi.org/10.1016/S0273-1177(99)00911-4, 2000.
Galkin, I. A., Reinisch, B. W., Huang, X., and Bilitza, D.: Assimilation of
GIRO data into a real-time IRI, Radio Sci., 47, RS0L07,
https://doi.org/10.1029/2011RS004952, 2012.
Gulyaeva, T. L.: Modification of solar activity indices in the International
Reference Ionosphere IRI and IRI-Plas models due to recent revision of
sunspot number time series, Solar-Terr. Phys., 2, 59–66,
https://doi.org/10.12737/20872, 2014.
Habarulema, J. B. and Ssessanga, N.: Adapting a climatology model to
improve estimation of ionosphere parameters and subsequent validation with
radio occultation and ionosonde data, Space Weather, 15, 84–98,
https://doi.org/10.1002/2016SW001549, 2016.
Hernandez-Pajares, M., Juan, J., Sanz, J., and Bilitza, D.: Combining GPS
measurements and IRI model values for Space Weather specification, Adv.
Space Res., 29, 949–958, https://doi.org/10.1016/S0273-1177(02)00051-0, 2002.
ISO 26457: Space systems – Space Environment (natural and artificial) –
The Earth's ionosphere model: international reference ionosphere (IRI) model
and extension to the plasmasphere,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61556, last access: 20 July 2018, International
Standardization Organization, 2014.
Jones, W. B. and Gallet, R. M.: The representation of diurnal and geographic
variations of ionospheric data by numerical methods, Telecomm. J., 32, 18–28, 1965.
Komjathy A., Langley, R., and Bilitza, D.: Ingesting GPS-Derived TEC Data
into the International Reference Ionosphere for single Frequency Radar
Altimeter Ionospheric Delay Corrections, Adv. Space Res., 22, 793–802,
https://doi.org/10.1016/S0273-1177(98)00100-8, 1998.
Kouris, S. S. and Muggleton, L. M.: Diurnal variation in the E-layer ionization,
J. Atmos. Terr. Phys., 35, 133–139, https://doi.org/10.1016/0021-9169(73)90221-3, 1973.
Liu, R., Smith, P., and King, J.: A new solar index which leads to improved
foF2 predictions using the CCIR atlas, Telecomm. J., 50, 408–414, 1983.
Lühr, H. and Xiong, C.: The IRI2007 model overestimates electron
density during the 23/24 solar minimum, Geophys. Res. Lett., 37,
L23101, https://doi.org/10.1029/2010GL045430, 2010.
Nava, B., Coïsson, P., and Radicella, S. M.:
A new version of the NeQuick ionosphere electron density model,
J. Atmos. Sol.-Terr. Phy., 70, 1856–1862, https://doi.org/10.1016/j.jastp.2008.01.015, 2008.
Nava, B., Radicella, S. M., and Azpilicueta, F.: Data ingestion into NeQuick
2, Radio Sci., 46, RS0D17, https://doi.org/10.1029/2010RS004635, 2011.
Mertens, C. J., Xiaojing Xu, Bilitza, D., Mlynczak, M. G., and Russell III, J. M.:
Empirical STORM-E Model: I. Theoretical and Observational Basis,
Adv. Space Res., 51, 554–574, https://doi.org/10.1016/j.asr.2012.09.009, 2013a.
Mertens, C. J., Xiaojing Xu, Bilitza, D., Mlynczak, M. G., and Russell III, J. M.:
Empirical STORM-E Model: II. Geomagnetic Corrections to Nighttime Ionospheric
E-Region Electron Densities, Adv. Space Res., 51, 575–598, https://doi.org/10.1016/j.asr.2012.09.014, 2013b.
Migoya-Orué, Y., Nava, B., Radicella, S., and Alazo-Cuartas, K.: GNSS
derived TEC data ingestion into IRI 2012,
Adv. Space Res., 55, 1994–2002, https://doi.org/10.1016/j.asr.2014.12.033, 2015.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical
model of the atmosphere: statistical comparisons and scientific issues,
J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Rawer, K., Ramakrishnan, S., and Bilitza, D.: Preliminary reference profiles
for electron and ion densities and temperatures proposed for the
International Reference Ionosphere, Institut für physikalische
Weltraumforschung, Scientific Report W.B. 2, Freiburg, Germany, 1975.
Rawer, K., Bilitza, D., and Ramakrishnan, S.: International Reference
Ionosphere 1978, International Union of Radio Science (URSI), Brussels,
Belgium, 1978a.
Rawer, K., Bilitza, D., and Ramakrishnan, S.: Goals and status of the
International Reference Ionosphere, Rev. Geophys., 16, 177–181, 1978b.
Rawer, K., Lincoln, V., and Conkright, R. (Eds.): International Reference
Ionosphere – IRI 79, World Data Center A for Solar-Terrestrial Physics,
Report UAG-82, Boulder, Colorado, USA, 1981.
Richards, P. G., Bilitza, D., and Voglozin, D.: Ion density calculator (IDC):
A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, https://doi.org/10.1029/2009RS004332, 2010.
Rush C., Fox, M., Bilitza, D., Davies, K., McNamara, L., Stewart, F., and PoKempner, M.:
Ionospheric mapping – an update of foF2 coefficients, Telecomm. J., 56, 179–182, 1989.
Scherliess, L. and Fejer, B.: Radar and satellite global equatorial Fl
region vertical drift model, J. Geophys. Res., 104, 6829–6842, 1999.
Schmidt, M., Bilitza, D., Shum, C. K., and Zeilhofer, C.: Regional 4-D
modeling of the ionospheric electron density, Adv. Space Res., 42,
782–790, https://doi.org/10.1016/j.asr.2007.02.050, 2008.
Scotto, C., Mosert de Gonzalez, M., Radicella, S., and Zolesi, B.: On the prediction
of the F1-ledge occurrence and critical frequency, Adv. Space Res.,
20, 1773–1776, https://doi.org/10.1016/S0273-1177(97)00589-9, 1997.
Shim, J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Codrescu, M.,
Emery, B., Foster, B., FullerRowell, T., Huba, J., Mannucci, A. J., Ridley, A.,
Scherliess, L., Schunk, R. W., Stephens, P., Thompson, D. C., Zhu, L., Anderson, D.,
Chau, J. L., Sojka, J. J., and Rideout, B.:
CEDAR Electrodynamics Thermosphere Ionosphere 1 (ETI)
Challenge for Systematic Assessment of Ionosphere/Thermosphere Models 1:
NmF2, hmF2, and Vertical Drift Using Ground Based Observations, Space
Weather, 9, S12003, https://doi.org/10.1029/2011SW000727, 2011.
Shim J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Butala, M.,
Codrescu, M., Emery, B. A., Foster, B., Fuller-Rowell, T. J.,
Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W.,
Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., and Sutton, E.:
CEDAR Electrodynamics Thermosphere Ionosphere (ETI)
Challenge for systematic assessment of ionosphere/thermosphere models:
Electron density, neutral density, NmF2, and hmF2 using space based
observations, Space Weather, 10, S10004, https://doi.org/10.1029/2012SW000851, 2012.
Shim, J. S., Rastätter, L., Kuznetsova, M., Bilitza, D., Codrescu, M.,
Coster, A. J., Emery, B. A., Fedrizzi, M., Förster, M., Fuller-Rowell, T. J.,
Gardner, L. C., Goncharenko, L., Huba, J., McDonald, S. E., Mannucci, A. J.,
Namgaladze, A. A., Pi, X., Prokhorov, B. E., Ridley, A. J., Scherliess, L.,
Schunk, R. W., Sojka, J. J., and Zhu, L.: CEDAR-GEM challenge for systematic assessment of
Ionosphere/thermosphere models in predicting TEC during the 2006 December
storm event, Space Weather, 15, 1238–1256, https://doi.org/10.1002/2017SW001649, 2017.
Shubin V. N.: Global median model of the F2-layer peak height based on
ionospheric radio-occultation and ground-based digisonde observations, Adv.
Space Res., 56, 916–928, https://doi.org/10.1016/j.asr.2015.05.029, 2015.
Shubin, V. N., Karpachev, A. T., and Tsybulya, K. G.: Global model of the F2
layer peak height for low solar activity based on GPS radio-occultation
data, J. Atmos. Sol.-Terr. Phy., 104, 106–115,
https://doi.org/10.1016/j.jastp.2013.08.024, 2013.
Themens, D. R. and Jayachandran, P. T.: Solar activity variability in the
IRI at high latitudes: Comparisons with GPS total electron content, J.
Geophys. Res.-Space, 121, 3793–3807, https://doi.org/10.1002/2016JA022664,
2016.
Triskova, L., Truhlik, V., and Smilauer, J.: An empirical model of ion composition
in the outer ionosphere, Adv. Space Res., 31, 653–663, https://doi.org/10.1016/S0273-1177(03)00040-1, 2003.
Truhlik, V., Bilitza, D., and Triskova, L.: A new global empirical model of the
electron temperature with inclusion of the solar activity variations for IRI,
Earth Planets and Space, 64, 531–543, https://doi.org/10.5047/eps.2011.10.016, 2012.
Wenjing, L., Limberger, M., Schmidt, M., Dettmering, D., Hugentobler, U.,
Bilitza, D., Jakowski, N., Hoque, M. M., Wilken, V., and Gerzen, T.: Regional
modeling of ionospheric peak parameters using GNSS data: an update for IRI,
Adv. Space Res., 55, 1981–1993, https://doi.org/10.1016/j.asr.2014.12.006, 2015.
Xinan, Y., Schreiner, W. S., Kuo, Y.-H., Hunt, D. C., Wang, W., Solomon, S. C.,
Burns, A. G., Bilitza, D., Liu, J.-Y., Wan, W., and Wickert, J.:
Global 3-D ionospheric electron density reanalysis based on
multi-source data assimilation, J. Geophys. Res., 117, A09325,
https://doi.org/10.1029/2012JA017968, 2012.
Zhang, Y.-L., Paxton, L. J., and Bilitza, D.: Near real-time assimilation of
auroral peak E-region density and equatorward boundary in IRI,
Adv. Space Res., 8, 1055–1063, https://doi.org/10.1016/j.asr.2010.06.029, 2010.
Short summary
This paper gives a brief overview over the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the ionosphere by the International Standardization Organization (ISO). Of great importance are the external drivers of the model that help IRI to represent ionospheric conditions as realistically as possible. The paper discusses the solar and ionospheric measurements that are used as drivers and presents recent improvements and changes.
This paper gives a brief overview over the International Reference Ionosphere (IRI) project and...