Near Infrared Diode Laser THz Systems
Carsten Brenner
CORRESPONDING AUTHOR
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Yinghui Hu
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Jared Gwaro
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Nils Surkamp
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Benjamin Döpke
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Martin R. Hofmann
Photonics and Terahertz Technology, Ruhr-Universität Bochum, 44801 Bochum, Germany
Besher Kani
ZHO/Optoelektronik, Universität Duisburg-Essen, 47048 Duisburg, Germany
Andreas Stöhr
ZHO/Optoelektronik, Universität Duisburg-Essen, 47048 Duisburg, Germany
Bernd Sumpf
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Andreas Klehr
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Jörg Fricke
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Related authors
Carsten Brenner, Nils Surkamp, and Martin Rudolf Hofmann
Adv. Radio Sci., 21, 1–6, https://doi.org/10.5194/ars-21-1-2023, https://doi.org/10.5194/ars-21-1-2023, 2023
Short summary
Short summary
THz systems are promising tools for non-destructive testing and material characterisation. High costs, which are mostly determined by the laser system, prevent the application in the market. By using monolithic dual-colour lasers, a significant cost decrease can be achieved. We discuss some of the typical drawbacks associated with these lasers. Furthermore, we present a complete THz system which is based on a dual-colour diode laser to show the capabilities for material characterisation.
Carsten Brenner, Nils Surkamp, and Martin Rudolf Hofmann
Adv. Radio Sci., 21, 1–6, https://doi.org/10.5194/ars-21-1-2023, https://doi.org/10.5194/ars-21-1-2023, 2023
Short summary
Short summary
THz systems are promising tools for non-destructive testing and material characterisation. High costs, which are mostly determined by the laser system, prevent the application in the market. By using monolithic dual-colour lasers, a significant cost decrease can be achieved. We discuss some of the typical drawbacks associated with these lasers. Furthermore, we present a complete THz system which is based on a dual-colour diode laser to show the capabilities for material characterisation.
Cited articles
Brenner, C., Hofmann, M., Scheller, M., Shakfa, M. K., Koch, M., Mayorga,
I. C., Klehr, A., Erbert, G., and Tränkle, G.: Compact
diode-laser-based system for continuous-wave and quasi-time-domain terahertz
spectroscopy, Opt. Lett., 35, 3859, https://doi.org/10.1364/OL.35.003859,
2010. a, b
Chen, P., Blake, G. A., Gaidis, M. C., Brown, E. R., McIntosh, K. A., Chou,
S. Y., Nathan, M. I., and Williamson, F.: Spectroscopic applications and
frequency locking of THz photomixing with distributed-Bragg-reflector diode
lasers in low-temperature-grown GaAs, Appl. Phys. Lett., 71,
1601–1603, https://doi.org/10.1063/1.119845, 1997. a, b
Chi, M., Jensen, O. B., and Petersen, P. M.: High-power dual-wavelength
external-cavity diode laser based on tapered amplifier with tunable terahertz
frequency difference, Opt. Lett., 36, 2626, https://doi.org/10.1364/OL.36.002626,
2011. a
Criado, A. R., Acedo, P., Carpintero, G., de Dios, C., and Yvind, K.:
Observation of phase noise reduction in photonically synthesized sub-THz
signals using a passively mode-locked laser diode and highly selective
optical filtering, Opt. Express, 20, 1253, https://doi.org/10.1364/OE.20.001253,
2012. a, b
Demers, J. R., Logan Jr., R. T., Bergeron, N. J., and Brown, E. R.: A
coherent frequency-domain THz spectrometer with a signal-to-noise ratio of
60 dB at 1 THz, SPIE Defence and Security Symposium, 6949, 694909, https://doi.org/10.1117/12.777457,
2008. a, b, c
Deninger, A. J., Göbel, T., Schönherr, D., Kinder, T.,
Roggenbuck,
A., Köberle, M., Lison, F., Müller-Wirts, T., and Meissner, P.:
Precisely tunable continuous-wave terahertz source with interferometric
frequency control, Rev. Sci. Instrum., 79, 044702,
https://doi.org/10.1063/1.2905033, 2008. a
Döpke, B., Pilny, R. H., Brenner, C., Klehr, A., Erbert, G.,
Tränkle, G., Balzer, J. C., and Hofmann, M. R.: Self-optimizing
femtosecond semiconductor laser, Opt. Express, 23, 9710,
https://doi.org/10.1364/OE.23.009710, 2015. a
Fice, M., Rouvalis, E., Ponnampalam, L., Renaud, C., and Seeds, A.:
Telecommunications technology-based terahertz sources, Electron. Lett.,
46, S28, https://doi.org/10.1049/el.2010.1917, 2010. a
Först, M., Janke, C., Nagel, M., Kurz, H., and Bartels, A.:
Asynchronous
optical sampling for high-speed characterization of integrated resonant THz
sensor arrays, Conference on Lasers and Electro-Optics Europe – Technical
Digest, 30, 1405, https://doi.org/10.1109/CLEOE.2005.1568161, 2005. a
Friedrich, C. S., Brenner, C., Hoffmann, S., Schmitz, A., Mayorga, I. C.,
Klehr, A., Erbert, G., and Hofmann, M. R.: New two-color laser concepts for
THz generation, IEEE Journal on Selected Topics in Quantum Electronics, 14,
270–276, https://doi.org/10.1109/JSTQE.2007.912754, 2008. a
Friederich, F., Schuricht, G., Deninger, A., Lison, F., Spickermann, G.,
Haring Bolívar, P., and Roskos, H. G.: Phase-locking of the beat
signal of two distributed-feedback diode lasers to oscillators working in the
MHz to THz range, Opt. Express, 18, 8621–8629, https://doi.org/10.1364/OE.18.008621, 2010. a, b
Göbel, T., Schoenherr, D., Sydlo, C., Feiginov, M., Meissner, P., and
Hartnagel, H.: Continuous-wave terahertz system with electro-optical
terahertz phase control, Electron. Lett., 44, 863,
https://doi.org/10.1049/el:20081360, 2008. a
Göbel, T., Stanze, D., Troppenz, U., Kreissl, J., Sartorius, B., and
Schell, M.: Integrated continuous-wave THz control unit with 1 THz tuning
range, in: International Conference on Infrared, Millimeter, and Terahertz
Waves, IRMMW-THz, IEEE, 1–3, https://doi.org/10.1109/IRMMW-THz.2012.6380405,
2012. a
Göbel, T., Stanze, D., Globisch, B., Dietz, R. J. B., Roehle, H., and
Schell, M.: Telecom technology based continuous wave terahertz photomixing
system with 105 decibel signal-to-noise ratio and 35 terahertz bandwidth,
Opt. Lett., 38, 4197, https://doi.org/10.1364/OL.38.004197,
2013. a
Gregory, I. S., Tribe, W. R., Evans, M. J., Drysdale, T. D., Cumming, D.
R. S.,
and Missous, M.: Multi-channel homodyne detection of continuous-wave
terahertz radiation, Appl. Phys. Lett., 87, 034106,
https://doi.org/10.1063/1.1990249,
2005. a, b
Gwaro, J. O., Brenner, C., Sumpf, B., Klehr, A., Fricke, J., and Hofmann,
M. R.: Terahertz frequency generation with monolithically integrated dual
wavelength distributed Bragg reflector semiconductor laser diode, IET
Optoelectron., 11, 49–52, https://doi.org/10.1049/iet-opt.2016.0054, 2017. a
Hermelo, M. F., Shih, P.-T. B., Steeg, M., Ng'oma, A., and Stöhr, A.:
Spectral efficient 64-QAM-OFDM terahertz communication link, Opt.
Express, 25, 19360, https://doi.org/10.1364/OE.25.019360, 2017. a
Hisatake, S., Kim, J. Y., Ajito, K., and Nagatsuma, T.: Self-heterodyne
spectrometer using uni-traveling-carrier photodiodes for terahertz-wave
generators and optoelectronic mixers, J. Lightwave Technol., 32,
3683–3689, https://doi.org/10.1109/JLT.2014.2321004, 2014. a, b, c
Hochrein, T., Wilk, R., Mei, M., Holzwarth, R., Krumbholz, N., and Koch, M.:
Optical sampling by laser cavity tuning, Opt. Express, 18, 1613,
https://doi.org/10.1364/OE.18.001613, 2010. a
Hoffmann, S., Luo, X., and Hofmann, M.: Bandwidth limitations of two-colour
diode lasers for direct terahertz emission, Electron. Lett., 42, 696,
https://doi.org/10.1049/el:20061246,
2006. a
Hübers, H. W., Kimmitt, M. F., Hiromoto, N., and Bründermann, E.:
Terahertz spectroscopy: System and sensitivity considerations, IEEE
T. THz Sci. Techn., 1, 321–331,
https://doi.org/10.1109/TTHZ.2011.2159877, 2011. a
Jepsen, P. U., Cooke, D. G., and Koch, M.: Terahertz spectroscopy and
imaging – Modern techniques and applications, Laser and Photonics Reviews,
5,
124–166, https://doi.org/10.1002/lpor.201000011, 2011. a
Jördens, C., Schlauch, T., Li, M., Hofmann, M. R., Bieler, M., and
Koch,
M.: All-semiconductor laser driven terahertz time-domain spectrometer,
Appl. Phys. B, 93, 515–520,
https://doi.org/10.1007/s00340-008-3210-4, 2008. a
Kim, Y. and Yee, D.-S.: High-speed terahertz time-domain spectroscopy based
on
electronically controlled optical sampling, Opt. Lett., 35, 3715,
https://doi.org/10.1364/OL.35.003715,
2010. a
Kitahara, K., Oto, K., Nakajima, M., and Muro, K.: Note: Development of a
high
resolution and wide band terahertz spectrometer based on a 1 µm-band
external cavity diode laser, Rev. Sci. Instrum., 84, 126102,
https://doi.org/10.1063/1.4842275, 2013. a
Klehr, A., Fricke, J., Knauer, A., Erbert, G., Walther, M., Wilk, R.,
Mikulics,
M., and Koch, M.: High-power monolithic two-mode DFB laser diodes for the
generation of THz radiation, IEEE J. Sel. Top. Quant., 14, 289–294, https://doi.org/10.1109/JSTQE.2007.913119,
2008. a
Kleine-Ostmann, T., Knobloch, P., Koch, M., Hoffmann, S., Breede, M.,
Hofmann,
M., Hein, G., Pierz, K., Sperling, M., and Donhuijsen, K.: Continuous-wave
THz imaging, Electron. Lett., 37, 1461, https://doi.org/10.1049/el:20011003, 2001. a
Kohlhaas, R. B., Rehn, A., Nellen, S., Koch, M., Schell, M., Dietz, R. J. B.,
and Balzer, J. C.: Terahertz quasi time-domain spectroscopy based on telecom
technology for 1550 nm, Opt. Express, 25, 12851,
https://doi.org/10.1364/OE.25.012851, 2017. a, b
Matsuura, S., Tani, M., Abe, H., Sakai, K., Ozeki, H., and Saito, S.:
High-resolution terahertz spectroscopy by a compact radiation source based
on photomixing with diode lasers in a photoconductive antenna, J.
Mol. Spectrosc., 187, 97–101, https://doi.org/10.1006/jmsp.1997.7486, 1998. a
Matus, M., Kolesik, M., Moloney, J. V., Hofmann, M., and Koch, S. W.:
Dynamics
of two-color laser systems with spectrally filtered feedback, J.
Opt. Soc. Am. B, 21, 1758, https://doi.org/10.1364/JOSAB.21.001758, 2004. a
McIntosh, K. A., Brown, E. R., Nichols, K. B., McMahon, O. B., Dinatale,
W. F.,
and Lyszczarz, T. M.: Terahertz photomixing with diode lasers in
low-temperature-grown GaAs, Appl. Phys. Lett., 67, 3844,
https://doi.org/10.1063/1.115292, 1995. a, b, c
Merghem, K., Busch, S. F., Lelarge, F., Koch, M., Ramdane, A., and Balzer,
J. C.: Terahertz Time-Domain Spectroscopy System Driven by a Monolithic
Semiconductor Laser, J. Infrared, Millim. Te.,
38, 958–962, https://doi.org/10.1007/s10762-017-0401-2, 2017. a
Moon, K., Kim, N., Shin, J.-H., Yoon, Y.-J., Han, S.-P., and Park, K. H.:
Continuous-wave terahertz system based on a dual-mode laser for real-time
non-contact measurement of thickness and conductivity, Opt. Express, 22,
2259, https://doi.org/10.1364/OE.22.002259,
2014. a, b
Morikawa, O., Tonouchi, M., and Hangyo, M.: Sub-THz spectroscopic system
using
a multimode laser diode and photoconductive antenna, Appl. Phys.
Lett., 75, 3772–3774, https://doi.org/10.1063/1.125451,
1999. a, b
Morikawa, O., Fujita, M., and Hangyo, M.: Improvement of signal-to-noise
ratio
of a subterahertz spectrometer using a continuous-wave multimode laser diode
by single-mode fiber optics, Appl. Phys. Lett., 85, 881–883,
https://doi.org/10.1063/1.1777800,
2004. a, b
Naftaly, M., Stone, M. R., Malcoci, A., Miles, R. E., and Camara Mayorga, I.:
Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon, Electron. Lett., 41, 128, https://doi.org/10.1049/el:20057532, 2005. a
O'Brien, S., Osborne, S., Bitauld, D., Brandonisio, N., Amann, A., Phelan,
R.,
Kelly, B., and O'Gorman, J.: Optical synthesis of terahertz and
millimeter-wave frequencies with discrete mode diode lasers, IEEE
T. Microw. Theory, 58, 3083–3087,
https://doi.org/10.1109/TMTT.2010.2074931, 2010. a
Osborne, S., O'Brien, S., O'Reilly, E., Huggard, P., and Ellison, B.:
Generation of CW 0.5 THz radiation by photomixing the output of a two-colour
1.49 [micro sign]m Fabry-Perot diode laser, Electron. Lett., 44, 296,
https://doi.org/10.1049/el:20083534, 2008. a
Paquet, R., Blin, S., Myara, M., Gratiet, L. L., Sellahi, M., Chomet, B.,
Beaudoin, G., Sagnes, I., and Garnache, A.: Coherent continuous-wave
dual-frequency high-Q external-cavity semiconductor laser for GHz–THz
applications, Opt. Lett., 41, 3751, https://doi.org/10.1364/OL.41.003751,
2016. a
Park, I., Sydlo, C., Fischer, I., Elsäßer, W., and Hartnagel,
H. L.:
Generation and spectroscopic application of tunable continuous-wave
terahertz radiation using a dual-mode semiconductor laser, Meas.
Sci. Technol., 19, 065305, https://doi.org/10.1088/0957-0233/19/6/065305, 2008. a
Preu, S., Döhler, G. H., Malzer, S., Stöhr, A., Rymanov, V.,
Göbel, T., Brown, E. R., Feiginov, M., Gonzalo, R., Beruete, M., and
Navarro-Cía, M.: Principles of THz Generation, in: Semiconductor THz
Technology: Devices and Systems at Room Temperature Operation, 3–68,
John Wiley & Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9781118920411.ch2, 2015. a, b
Probst, T., Rehn, A., and Koch, M.: Compact and low-cost THz QTDS system,
Opt. Express, 23, 21972, https://doi.org/10.1364/OE.23.021972, 2015. a
Roggenbuck, A., Schmitz, H., Deninger, A., Cámara Mayorga, I. C.,
Hemberger, J., Güsten, R., and Grüninger, M.: Coherent broadband
continuous-wave terahertz spectroscopy on solid-state samples, New J. Phys.,
12, 043017, https://doi.org/10.1088/1367-2630/12/4/043017, 2010. a, b, c
Rouvalis, E., Fice, M. J., Renaud, C. C., and Seeds, A. J.: Optoelectronic
detection of millimetre-wave signals with travelling-wave uni-travelling
carrier photodiodes, Opt. Express, 19, 2079, https://doi.org/10.1364/OE.19.002079,
2011. a, b
Rymanov, V., Babiel, S., Wachholz, M., Dulme, S., and Stöhr, A.:
Ultra-broadband integrated photonic 200–300 GHz transmitters for wireless
radio-over-fiber applications, in: International Conference on Infrared,
Millimeter, and Terahertz Waves, IRMMW-THz, 1–2, IEEE,
https://doi.org/10.1109/IRMMW-THz.2013.6665453, 2013. a, b
Ryu, H.-C., Kim, N., Han, S.-P., Ko, H., Park, J.-W., Moon, K., and Park,
K. H.: Simple and cost-effective thickness measurement terahertz system
based on a compact 155 µm λ∕4 phase-shifted dual-mode laser,
Opt. Express, 20, 25990, https://doi.org/10.1364/OE.20.025990, 2012. a, b
Sartorius, B., Stanze, D., Göbel, T., Schmidt, D., and Schell, M.:
Continuous wave terahertz systems based on 1.5 µm telecom technologies,
J. Infrared Millim. Te., 33, 405–417,
https://doi.org/10.1007/s10762-011-9849-7, 2012. a
Sato, K.: Optical pulse generation using fabry-perot lasers under
continuous-wave operation, IEEE J. Sel. Top. Quant., 9, 1288–1293, https://doi.org/10.1109/JSTQE.2003.819503, 2003. a
Scheller, M. and Koch, M.: Terahertz quasi time domain spectroscopy, Opt.
Express, 17, 17723, https://doi.org/10.1364/OE.17.017723,
2009. a, b
Shibuya, K., Tani, M., and Hangyo, M.: Compact and inexpensive
continuous-wave
sub-THz imaging system using a fiber-coupled multimode laser diode,
IRMMW-THz 2006 – 31st International Conference on Infrared and Millimeter
Waves and 14th International Conference on Terahertz Electronics, 90, 428,
https://doi.org/10.1109/ICIMW.2006.368636, 2006. a, b
Song, H., Hwang, S., An, H., Song, H.-J., and Song, J.-I.: Continuous-wave
THz
vector imaging system utilizing two-tone signal generation and self-mixing
detection, Opt. Express, 25, 20718, https://doi.org/10.1364/OE.25.020718, 2017. a, b
Stanze, D., Deninger, A., Roggenbuck, A., Schindler, S., Schlak, M., and
Sartorius, B.: Compact cw terahertz spectrometer pumped at 1.5 µm
wavelength, J. Infrared Millim. Te., 32,
225–232, https://doi.org/10.1007/s10762-010-9751-8, 2011. a, b, c
Tanabe, T., Ragam, S., and Oyama, Y.: Continuous wave terahertz wave
spectrometer based on diode laser pumping: Potential applications in high
resolution spectroscopy, Rev. Sci. Instrum., 80, 113105,
https://doi.org/10.1063/1.3258202, 2009. a
Tani, M., Gu, P., Hyodo, M., Sakai, K., and Hidaka, T.: Generation of
coherent
terahertz radiation by photomixing of dual-mode lasers, Opt. Quant.
Electron., 32, 503–520, https://doi.org/10.1023/A:1007070931314, 2000. a
Tani, M., Morikawa, O., Matsuura, S., and Hangyo, M.: Generation of
terahertz
radiation by photomixing with dual- and multiple-mode lasers, Semicond.
Sci. Tech., 20, S151–S163, https://doi.org/10.1088/0268-1242/20/7/005,
2005.
a, b, c
Tauser, F., Rausch, C., Posthumus, J. H., and Lison, F.: Electronically
controlled optical sampling using 100 MHz repetition rate fiber lasers, in:
Commercial and Biomedical Applications of Ultrafast Lasers VIII, edited by:
Neev, J., Nolte, S., Heisterkamp, A., and Schaffer, C. B., Vol. 6881,
68810O, https://doi.org/10.1117/12.764506, 2008. a
Theurer, M., Göbel, T., Stanze, D., Troppenz, U., Soares, F., Grote,
N.,
and Schell, M.: Photonic-integrated circuit for continuous-wave THz
generation, Opt. Lett., 38, 3724, https://doi.org/10.1364/OL.38.003724,
2013. a
Thirunavukkuarasu, K., Langenbach, M., Roggenbuck, A., Vidal, E., Schmitz,
H.,
Hemberger, J., and Grüninger, M.: Self-normalizing phase measurement
in multimode terahertz spectroscopy based on photomixing of three lasers,
Appl. Phys. Lett., 106, 031111, https://doi.org/10.1063/1.4906374, 2015. a
Verghese, S., McIntosh, K. A., Calawa, S., Dinatale, W. F., Duerr, E. K., and
Molvar, K. A.: Generation and detection of coherent terahertz waves using
two photomixers, Appl. Phys. Lett., 73, 3824–3826,
https://doi.org/10.1063/1.122906,
1998. a, b, c
Wang, C. L. and Pan, C. L.: Tunable dual-wavelength operation of a diode
array
with an external grating-loaded cavity, Appl. Phys. Lett., 64,
3089–3091, https://doi.org/10.1063/1.111356,
1994. a
Short summary
The generation and detection of radiation in the THz frequency range can be achieved with many different electronic and photonic concepts. Among the many different photonic THz systems the most versatile are based on diode lasers. In this paper we describe and review the different concepts and optimization ideas for diode laser based THz systems in order to achieve the best performance for different types of THz setups.
The generation and detection of radiation in the THz frequency range can be achieved with many...