D region observations by VHF and HF radars during a rocket campaign at Andøya dedicated to investigations of PMWE
Leibniz Institute of Atmospheric Physics at the Rostock University, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Toralf Renkwitz
Hochschule Wismar, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Straße 14, 23966 Wismar, Germany
Boris Strelnikov
Leibniz Institute of Atmospheric Physics at the Rostock University, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Related authors
Ralph Latteck and Damian J. Murphy
Ann. Geophys., 42, 55–68, https://doi.org/10.5194/angeo-42-55-2024, https://doi.org/10.5194/angeo-42-55-2024, 2024
Short summary
Short summary
This paper gives an overview of continuous measurements of polar mesophere summer echoes (PMSE) by VHF radars at Andøya (69° N) and Davis (69° S). PMSE signal strengths are of the same order of magnitude; significantly fewer PMSE were observed in the Southern than the Northern Hemisphere. Compared to Andøya, the PMSE season over Davis starts ~7 d later and ends 9 d earlier; PMSE occur less frequently but with greater seasonal/diurnal occurrence variability, reaching higher peak altitudes.
Jennifer Hartisch, Jorge L. Chau, Ralph Latteck, Toralf Renkwitz, and Marius Zecha
Ann. Geophys., 42, 29–43, https://doi.org/10.5194/angeo-42-29-2024, https://doi.org/10.5194/angeo-42-29-2024, 2024
Short summary
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Juan Miguel Urco, Jorge Luis Chau, Tobias Weber, and Ralph Latteck
Atmos. Meas. Tech., 12, 955–969, https://doi.org/10.5194/amt-12-955-2019, https://doi.org/10.5194/amt-12-955-2019, 2019
Short summary
Short summary
For decades, radar observations have been used to study complicated atmospheric dynamics. Previous observations of the mesosphere, between 80 and 90 km altitude, over polar regions have been limited to a spatial resolution of a few kilometers. In this work, we present a technique which allows 3-D radar observations of the mesospheric dynamics, with an unprecedented spatial resolution of ~ 900 m. We combine the concept of MIMO and high-resolution algorithms to improve the spatial resolution.
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Short summary
Combining a phased-array power radar and a phased-array radio telescope, we have been able to identify and characterized horizontal structures and movement of noctilucent clouds, but at 3 m scales instead of optical scales. As a byproduct of our observations, we have studied their angular dependence. We show a new alternative to study these clouds on routine basis and therefore study the atmospheric dynamics that modulate them.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Qiang Li, Markus Rapp, Gunter Stober, and Ralph Latteck
Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, https://doi.org/10.5194/angeo-36-577-2018, 2018
Short summary
Short summary
With the powerful MAARSY radar, we detected 3D wind fields and the vertical winds show a non-Gaussian distribution. We further obtained the frequency spectrum of vertical wind. The distribution of the spectral slopes under different wind conditions is derived and their comparisons with the background horizontal winds show that the spectra become steeper with increasing wind velocities under quiet conditions, approach a slope of −5/3 at 10 m/s and then maintain this slope for even stronger winds.
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Toralf Renkwitz, Carsten Schult, and Ralph Latteck
Atmos. Meas. Tech., 10, 527–535, https://doi.org/10.5194/amt-10-527-2017, https://doi.org/10.5194/amt-10-527-2017, 2017
Short summary
Short summary
The knowledge of the actual radiation pattern is crucial for the analysis of radar echoes and is also an important indicator of the radar's health status. The method described here allows the radiation pattern to be characterized by observing meteor head echoes. In contrast to previous studies we generate angular occurrence maps of meteor trajectory points for periods of normal and limited radar functionality to derive the radiation pattern and compare them thorough simulation results.
T. Renkwitz, C. Schult, R. Latteck, and G. Stober
Adv. Radio Sci., 13, 41–48, https://doi.org/10.5194/ars-13-41-2015, https://doi.org/10.5194/ars-13-41-2015, 2015
S. Sommer, G. Stober, J. L. Chau, and R. Latteck
Adv. Radio Sci., 12, 197–203, https://doi.org/10.5194/ars-12-197-2014, https://doi.org/10.5194/ars-12-197-2014, 2014
G. Stober, S. Sommer, M. Rapp, and R. Latteck
Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, https://doi.org/10.5194/amt-6-2893-2013, 2013
C. Schult, G. Stober, J. L. Chau, and R. Latteck
Ann. Geophys., 31, 1843–1851, https://doi.org/10.5194/angeo-31-1843-2013, https://doi.org/10.5194/angeo-31-1843-2013, 2013
G. Stober, C. Schult, C. Baumann, R. Latteck, and M. Rapp
Ann. Geophys., 31, 473–487, https://doi.org/10.5194/angeo-31-473-2013, https://doi.org/10.5194/angeo-31-473-2013, 2013
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Carsten Baumann, Frank Arnold, and Boris Strelnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1631, https://doi.org/10.5194/egusphere-2024-1631, 2024
Short summary
Short summary
We used a mass spectrometer on a rocket to analyze natural ions at altitudes between 60 and 120 km. Our instrument was launched in 2018 and 2021 from Norway. The heaviest particles were detected around 80 km, while medium particles could be found even above 100 km. Our measurements show that different particles are formed and not just one predominating compound. The most likely compounds that form meteor smoke particles in our measurements are made up from oxides of iron, magnesium and silicon.
Ralph Latteck and Damian J. Murphy
Ann. Geophys., 42, 55–68, https://doi.org/10.5194/angeo-42-55-2024, https://doi.org/10.5194/angeo-42-55-2024, 2024
Short summary
Short summary
This paper gives an overview of continuous measurements of polar mesophere summer echoes (PMSE) by VHF radars at Andøya (69° N) and Davis (69° S). PMSE signal strengths are of the same order of magnitude; significantly fewer PMSE were observed in the Southern than the Northern Hemisphere. Compared to Andøya, the PMSE season over Davis starts ~7 d later and ends 9 d earlier; PMSE occur less frequently but with greater seasonal/diurnal occurrence variability, reaching higher peak altitudes.
Jennifer Hartisch, Jorge L. Chau, Ralph Latteck, Toralf Renkwitz, and Marius Zecha
Ann. Geophys., 42, 29–43, https://doi.org/10.5194/angeo-42-29-2024, https://doi.org/10.5194/angeo-42-29-2024, 2024
Short summary
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Martin Eberhart, Stefan Löhle, Boris Strelnikov, Jonas Hedin, Mikhail Khaplanov, Stefanos Fasoulas, Jörg Gumbel, Franz-Josef Lübken, and Markus Rapp
Atmos. Meas. Tech., 12, 2445–2461, https://doi.org/10.5194/amt-12-2445-2019, https://doi.org/10.5194/amt-12-2445-2019, 2019
Short summary
Short summary
This paper describes the measurement of atomic oxygen in the upper atmosphere onboard sounding rockets using solid electrolyte sensors. Calibration of the sensors in the laboratory is explained in detail. Results from the WADIS-2 rocket campaign show profiles of atomic oxygen density with a high spatial resolution.
Juan Miguel Urco, Jorge Luis Chau, Tobias Weber, and Ralph Latteck
Atmos. Meas. Tech., 12, 955–969, https://doi.org/10.5194/amt-12-955-2019, https://doi.org/10.5194/amt-12-955-2019, 2019
Short summary
Short summary
For decades, radar observations have been used to study complicated atmospheric dynamics. Previous observations of the mesosphere, between 80 and 90 km altitude, over polar regions have been limited to a spatial resolution of a few kilometers. In this work, we present a technique which allows 3-D radar observations of the mesospheric dynamics, with an unprecedented spatial resolution of ~ 900 m. We combine the concept of MIMO and high-resolution algorithms to improve the spatial resolution.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, and Franz-Josef Lübken
Atmos. Chem. Phys., 19, 77–88, https://doi.org/10.5194/acp-19-77-2019, https://doi.org/10.5194/acp-19-77-2019, 2019
Short summary
Short summary
Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate the thermal structure of the mesopause region. Vertically and horizontally resolved in situ and remote measurements are in good agreement and show dominating long-term and large-scale waves with periods of 24 h and higher tidal harmonics. Only a few gravity waves with periods shorter than 6 h and small amplitudes are there.
Gabriel Giono, Boris Strelnikov, Heiner Asmus, Tristan Staszak, Nickolay Ivchenko, and Franz-Josef Lübken
Atmos. Meas. Tech., 11, 5299–5314, https://doi.org/10.5194/amt-11-5299-2018, https://doi.org/10.5194/amt-11-5299-2018, 2018
Short summary
Short summary
Energetic photons, such as ultraviolet light, are able to eject electrons from a material surface, thus creating an electrical current, also called a photocurrent. A proper estimation of this photocurrent can be crucial for space- or rocket-borne particle detectors, as it can dominate over the currents that are of scientific interest (induced by charged particles, for example). This article outlines the design for photocurrent modelling and for experimental confirmation in a laboratory.
Gerald A. Lehmacher, Miguel F. Larsen, Richard L. Collins, Aroh Barjatya, and Boris Strelnikov
Ann. Geophys., 36, 1099–1116, https://doi.org/10.5194/angeo-36-1099-2018, https://doi.org/10.5194/angeo-36-1099-2018, 2018
Short summary
Short summary
We used sounding rockets to obtain four high-resolution temperature profiles in the mesosphere over a limited area. We found consistent deep isothermal and adiabatic layers, but variable and finely structured turbulence preferentially in the lower stable mesosphere. Accompanying tracer releases showed horizontal winds in the lower thermosphere with extreme shears and 200 m s−1 winds under moderately disturbed geomagnetic conditions, and convection-like structures just below the mesopause.
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Short summary
Combining a phased-array power radar and a phased-array radio telescope, we have been able to identify and characterized horizontal structures and movement of noctilucent clouds, but at 3 m scales instead of optical scales. As a byproduct of our observations, we have studied their angular dependence. We show a new alternative to study these clouds on routine basis and therefore study the atmospheric dynamics that modulate them.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Qiang Li, Markus Rapp, Gunter Stober, and Ralph Latteck
Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, https://doi.org/10.5194/angeo-36-577-2018, 2018
Short summary
Short summary
With the powerful MAARSY radar, we detected 3D wind fields and the vertical winds show a non-Gaussian distribution. We further obtained the frequency spectrum of vertical wind. The distribution of the spectral slopes under different wind conditions is derived and their comparisons with the background horizontal winds show that the spectra become steeper with increasing wind velocities under quiet conditions, approach a slope of −5/3 at 10 m/s and then maintain this slope for even stronger winds.
Heiner Asmus, Tristan Staszak, Boris Strelnikov, Franz-Josef Lübken, Martin Friedrich, and Markus Rapp
Ann. Geophys., 35, 979–998, https://doi.org/10.5194/angeo-35-979-2017, https://doi.org/10.5194/angeo-35-979-2017, 2017
Short summary
Short summary
This work sheds new light on the size distribution of dust grains of meteoric origin in the mesosphere and lower thermosphere region using rocket-borne instrumentation. We found that a large number of very small (~ 0.5 nm) particles are charged and therefore have a significant influence on the charge balance of the lower ionosphere.
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Toralf Renkwitz, Carsten Schult, and Ralph Latteck
Atmos. Meas. Tech., 10, 527–535, https://doi.org/10.5194/amt-10-527-2017, https://doi.org/10.5194/amt-10-527-2017, 2017
Short summary
Short summary
The knowledge of the actual radiation pattern is crucial for the analysis of radar echoes and is also an important indicator of the radar's health status. The method described here allows the radiation pattern to be characterized by observing meteor head echoes. In contrast to previous studies we generate angular occurrence maps of meteor trajectory points for periods of normal and limited radar functionality to derive the radiation pattern and compare them thorough simulation results.
T. Renkwitz, C. Schult, R. Latteck, and G. Stober
Adv. Radio Sci., 13, 41–48, https://doi.org/10.5194/ars-13-41-2015, https://doi.org/10.5194/ars-13-41-2015, 2015
S. Sommer, G. Stober, J. L. Chau, and R. Latteck
Adv. Radio Sci., 12, 197–203, https://doi.org/10.5194/ars-12-197-2014, https://doi.org/10.5194/ars-12-197-2014, 2014
G. Stober, S. Sommer, M. Rapp, and R. Latteck
Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, https://doi.org/10.5194/amt-6-2893-2013, 2013
C. Schult, G. Stober, J. L. Chau, and R. Latteck
Ann. Geophys., 31, 1843–1851, https://doi.org/10.5194/angeo-31-1843-2013, https://doi.org/10.5194/angeo-31-1843-2013, 2013
A. Szewczyk, B. Strelnikov, M. Rapp, I. Strelnikova, G. Baumgarten, N. Kaifler, T. Dunker, and U.-P. Hoppe
Ann. Geophys., 31, 775–785, https://doi.org/10.5194/angeo-31-775-2013, https://doi.org/10.5194/angeo-31-775-2013, 2013
G. Stober, C. Schult, C. Baumann, R. Latteck, and M. Rapp
Ann. Geophys., 31, 473–487, https://doi.org/10.5194/angeo-31-473-2013, https://doi.org/10.5194/angeo-31-473-2013, 2013
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, https://doi.org/10.5194/angeo-30-1661-2012, 2012
Cited articles
Adams, G. W., Brosnahan, J. W., Walden, D. C., and Nerney, S. F.: Mesospheric
observations using a 2.66-MHz radar as an imaging Doppler interferometer:
Description and first results, J. Geophys. Res.-Space, 91, 1671–1683, https://doi.org/10.1029/JA091iA02p01671, 1986. a
Belova, E., Kirkwood, S., Ekeberg, J., Osepian, A., Häggström, I., Nilsson, H., and Rietveld, M.: The dynamical background of polar mesosphere winter echoes from simultaneous EISCAT and ESRAD observations, Ann. Geophys., 23, 1239–1247, https://doi.org/10.5194/angeo-23-1239-2005, 2005. a, b, c
Brattli, A., Blix, T. A., Lie-Svendsen, Ø., Hoppe, U.-P., Lübken, F.-J., Rapp, M., Singer, W., Latteck, R., and Friedrich, M.: Rocket measurements of positive ions during polar mesosphere winter echo conditions, Atmos. Chem. Phys., 6, 5515–5524, https://doi.org/10.5194/acp-6-5515-2006, 2006. a
Cho, J. Y. N. and Röttger, J.: An updated review of polar mesosphere
summer echoes: Observation, theory, and their relationship to noctilucent
clouds and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997. a
Czechowsky, P., Rüster, R., and Schmidt, G.: Variations of mesospheric
structures in different seasons, Geophys. Res. Lett., 6, 459–462, 1979. a
Ecklund, W. L. and Balsley, B. B.: Long-term observations of the Arctic
mesosphere with the MST radar at Poker Flat, Alaska, J. Geophys.
Res., 86, 7775–7780, 1981. a
Hall, C. M., Manson, A. H., Meek, C. E., and Nozawa, S.: Isolated lower mesospheric echoes seen by medium frequency radar at 70∘ N, 19∘ E, Atmos. Chem. Phys., 6, 5307–5314, https://doi.org/10.5194/acp-6-5307-2006, 2006. a
Havnes, O., Latteck, R., Hartquist, T. W., and Antonsen, T.: First
Simultaneous Rocket and Radar Detections of Rare Low Summer Mesospheric
Clouds, Geophys. Res. Lett., 45, 5727–5734, https://doi.org/10.1029/2018GL078218,
2018. a
Hocking, W.: Observation and measurement of turbulence in the middle atmosphere
with a VHF radar, J. Atmos. Terr. Phys., 48, 655–670, https://doi.org/10.1016/0021-9169(86)90015-2,
1986. a
Kero, A., Enell, C.-F., Kavanagh, A. J., Vierinen, J., Virtanen, I.,
and Turunen, E.: Could negative ion production explain the polar
mesosphere winter echo (PMWE) modulation in active HF heating experiments?,
Geophys. Res. Lett., 35, L23102, https://doi.org/10.1029/2008GL035798, 2008. a
Kirkwood, S.: Polar mesosphere winter echoes – A review of recent results,
Adv. Space Res., 40, 751–757,
https://doi.org/10.1016/j.asr.2007.01.024,
2007. a
Kirkwood, S., Barabash, V., Belova, E., Nilsson, H., Rao, T. N.,
Stebel, K., Osepian, A., and Chilson, P. B.: Polar mesosphere winter
echoes during solar proton events, in: Advances in Polar Upper Atmosphere
Research, No. 16. September, edited by: Watanabe, O., National
Institute of Polar Research, Tokyo., p. 111, 2002. a, b, c
Kirkwood, S., Belova, E., Blum, U., Croskey, C., Dalin, P., Fricke, K.-H., Goldberg, R. A., Manninen, J., Mitchell, J. D., and Schmidlin, F.: Polar mesosphere winter echoes during MaCWAVE, Ann. Geophys., 24, 1245–1255, https://doi.org/10.5194/angeo-24-1245-2006, 2006a. a
Kirkwood, S., Chilson, P., Belova, E., Dalin, P., Häggström, I., Rietveld, M., and Singer, W.: Infrasound – the cause of strong Polar Mesosphere Winter Echoes?, Ann. Geophys., 24, 475–491, https://doi.org/10.5194/angeo-24-475-2006, 2006b. a, b
La Hoz, C. and Havnes, O.: Artificial modification of polar mesospheric
winter echoes with an RF heater: Do charged dust particles play an active
role?, J. Geophys. Res.-Atmos., 113, D19205,
https://doi.org/10.1029/2008JD010460, 2008. a
Latteck, R., Singer, W., and Bardey, H.: The ALWIN MST radar – Technical
design and performances, in: Proceedings of the 14th ESA Symposium on
European Rocket and Balloon Programmes and Related Research, Potsdam,
Germany, edited by: Kaldeich-Schürmann, B., Vol. ESA-SP 437, 179–184,
ESA Publications Devision, ESTEC, Noordwijk, the Netherlands, 1999. a
Latteck, R., Singer, W., Rapp, M., Renkwitz, T., and Stober, G.: Horizontally resolved structures of radar backscatter from polar mesospheric layers, Adv. Radio Sci., 10, 285–290, https://doi.org/10.5194/ars-10-285-2012, 2012a. a
Latteck, R., Singer, W., Rapp, M., Vandepeer, B., Renkwitz, T., Zecha, M., and
Stober, G.: MAARSY – The new MST radar on Andøya: System
description and first results, Radio Sci., 47, RS1006,
https://doi.org/10.1029/2011RS004775, 2012b. a
Lübken, F.-J., Strelnikov, B., Rapp, M., Singer, W., Latteck, R., Brattli, A., Hoppe, U.-P., and Friedrich, M.: The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes, Atmos. Chem. Phys., 6, 13–24, https://doi.org/10.5194/acp-6-13-2006, 2006. a, b
Morris, R. J., Klekociuk, A. R., and Holdsworth, D. A.: First observations of
Southern Hemisphere polar mesosphere winter echoes including conjugate
occurrences at ∼69∘ S latitude, Geophys. Res. Lett., 38,
L03811, https://doi.org/10.1029/2010GL046298, 2011. a
Nishiyama, T., Sato, K., Nakamura, T., Tsutsumi, M., Sato, T.,
Kohma, M., Nishimura, K., Tomikawa, Y., Ejiri, M. K., and Tsuda,
T. T.: Height and time characteristics of seasonal and diurnal variations in
PMWE based on 1 year observations by the PANSY radar (69.0∘ S, 39.6∘ E),
Geophys. Res. Lett., 42, 2100–2108, https://doi.org/10.1002/2015GL063349, 2015. a
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004. a, b
Rapp, M., Latteck, R., Stober, G., and Singer, W.: First 3-dimensional
observations of polar mesosphere winter echoes: resolving space-time
ambiguity, J. Geophys. Res., 116, A11307, https://doi.org/10.1029/2011JA016858, 2011. a, b
Renkwitz, T. and Latteck, R.: Variability of virtual layered phenomena in the
mesosphere observed with medium frequency radars at 69∘ N, J.
Atmos. Sol.-Terr. Phy., 163, 38–45,
https://doi.org/10.1016/j.jastp.2017.05.009, 2017. a, b
Renkwitz, T., Tsutsumi, M., Laskar, F. I., Chau, J. L., and Latteck, R.: On the
role of anisotropic MF/HF scattering in mesospheric wind estimation, Earth
Planets Space, 70, 158, https://doi.org/10.1186/s40623-018-0927-0, 2018. a, b, c
Roper, R. G. and Brosnahan, J. W.: Imaging Doppler interferometry and the
measurement of atmospheric turbulence, Radio Sci., 32, 1137–1148,
https://doi.org/10.1029/97RS00089,
1997. a, b
Singer, W., Latteck, R., Friedrich, M., Dalin, P., Kirkwood, S., Engler, N.,
and Holdsworth, D.: D-region electron densities obtained by differential
absorption and phase measurements with a 3-MHz Doppler radar, 17th ESA
Symposium on European Rocket and Balloon Programmes and Related Research,
233–238, 2005. a
Singer, W., Latteck, R., and Holdsworth, D. A.: A new narrow beam Doppler
radar at 3 MHz for studies of the high-latitude middle atmosphere, Adv. Space Res., 41, 1488–1494,
https://doi.org/10.1016/j.asr.2007.10.006,
2008.
a
Stober, G., Latteck, R., Rapp, M., Singer, W., and Zecha, M.: MAARSY – the new MST radar on Andøya: first results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array, Adv. Radio Sci., 10, 291–298, https://doi.org/10.5194/ars-10-291-2012, 2012. a
Strelnikov, B., Szewczyk, A., Strelnikova, I., Latteck, R., Baumgarten, G., Lübken, F.-J., Rapp, M., Fasoulas, S., Löhle, S., Eberhart, M., Hoppe, U.-P., Dunker, T., Friedrich, M., Hedin, J., Khaplanov, M., Gumbel, J., and Barjatya, A.: Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign, Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, 2017. a
Strelnikov, B., Eberhart, M., Friedrich, M., Hedin, J., Khaplanov, M., Baumgarten, G., Williams, B. P., Staszak, T., Asmus, H., Strelnikova, I., Latteck, R., Grygalashvyly, M., Lübken, F.-J., Höffner, J., Wörl, R., Gumbel, J., Löhle, S., Fasoulas, S., Rapp, M., Barjatya, A., Taylor, M. J., and Pautet, P.-D.: Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during WADIS sounding rocket project, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1043, in review, 2019. a
Woodman, R. F. and Guillen, A.: Radar observations of winds and turbulence in
the stratosphere and mesosphere, J. Atmos. Sci., 31,
493–505, 1974. a
Zeller, O., Zecha, M., Bremer, J., Latteck, R., and Singer, W.: Mean
characteristics of mesosphere winter echoes at mid- and high-latitudes, J.
Atmos. Sol.-Terr. Phy., 68, 1087–1104, https://doi.org/10.1016/j.jastp.2006.02.015,
2006. a, b, c
Short summary
In April 2018 the PMWE1 sounding rocket campaign was conducted at the Andøya Space Center involving coordinated measurements with rockets and ground instruments to measure parameters relevant for testing of the existing theories of PMWE formation. The Middle Atmosphere Alomar Radar System (MAARSY) was operated to detect PMWE with multiple beam directions. The Saura MF radar was operated with a multiple beam experiment to derive horizontal winds and electron density profiles.
In April 2018 the PMWE1 sounding rocket campaign was conducted at the Andøya Space Center...