Journal cover Journal topic
Advances in Radio Science An open-access journal of the U.R.S.I. Landesausschuss in der Bundesrepublik Deutschland e.V.
Journal topic

Journal metrics

CiteScore value: 1.500
CiteScore
1.500
SNIP value: 0.486
SNIP0.486
IPP value: 0.72
IPP0.72
SJR value: 0.211
SJR0.211
Scimago H <br class='widget-line-break'>index value: 22
Scimago H
index
22
h5-index value: 8
h5-index8
Volume 7
Adv. Radio Sci., 7, 237–242, 2009
https://doi.org/10.5194/ars-7-237-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
Adv. Radio Sci., 7, 237–242, 2009
https://doi.org/10.5194/ars-7-237-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  19 May 2009

19 May 2009

High-voltage (100 V) ChipfilmTM single-crystal silicon LDMOS transistor for integrated driver circuits in flexible displays

A. Asif1,2, H. Richter2, and J. N. Burghartz1,2 A. Asif et al.
  • 1Institut für Nano- und Mikroelektronische Systeme, Universität Stuttgart (INES), Elektrotechnisches Institut II, Pfaffenwaldring 47, 70569 Stuttgart, Germany
  • 2Institut für Mikroelektronik Stuttgart (IMS), Allmandring 30A, 70569 Stuttgart, Germany

Abstract. System-in-Foil (SiF) is an emerging field of large-area polymer electronics that employs new materials such as conductive polymers and electrophoretic micro-capsules (E-Ink) along with ultra-thin and thus flexible chips. In flexible displays, the integration of gate and source drivers onto the flexible part increases the yield and enhances the reliability of the system.

In this work we propose a high-voltage ChipfilmTM lateral diffused MOS transistor (LDMOS) structure on ultra-thin single-crystalline silicon chips. The fabrication process is compatible with CMOS standard processing. This LDMOS structure proves to be well suited for providing adequately large switching voltages in spite of the thin (<10 μm) substrate. A breakdown voltage of more than 100 volts with drain-to-source saturation current Ids(sat)≈85 μA/μm for N-LDMOS and Ids(sat)≈20 μA/μm for P-LDMOS is predicted through process and device simulations.

Publications Copernicus
Download
Citation