Grivet-Talocia, S. and Bandinu, M.: Improving the convergence of vector
fitting for equivalent circuit extraction from noisy frequency responses,
IEEE Transactions on Electromagnetic Compatibility, 48, 104–120,
https://doi.org/10.1109/TEMC.2006.870814, 2006.
a
Grivet-Talocia, S. and Gustavsen, B.: Passive macromodeling: theory and
applications, Wiley series in microwave and optical engineering, 1st Edn., John Wiley & Sons, Hoboken, New Jersey, 2016. a
Gustavsen, B. and Semlyen, A.: Rational approximation of frequency domain
responses by vector fitting, IEEE T. Power Deliv., 14, 1052–1061,
https://doi.org/10.1109/61.772353, 1999.
a,
b
Hamming, R.: Numerical methods for scientists and engineers, 2nd Edn., Dover Publications, Inc., New York, 1987. a
Hauer, J. F., Demeure, C. J., and Scharf, L. L.: Initial results in Prony
analysis of power system response signals, IEEE T. Power Syst., 5, 80–89,
https://doi.org/10.1109/59.49090, 1990.
a
Heindl, M., Tenbohlen, S., Kraetge, A., Krüger, M., and Velásquez, J.: Algorithmic determination of pole-zero representations of power transformers’ transfer functions for interpretation of FRA data, in: 16th Int. Symp. on High Voltage Engineering, Johannesburg, 2009. a
Hill, D. A.: Electromagnetic fields in cavities: deterministic and statistical theories, John Wiley & Sons, Inc, Hoboken, NJ, 2009. a
Hoffmann, R.: Signalanalyse und -erkennung, Springer, Berlin, Heidelberg, 1998.
a,
b
Jacquelin, J.: Regressions et Equations Integrales, available at:
https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales
(last access: 26 February 2020), 2014. a
Krauthäuser, H.: Grundlagen und Anwendungen von Modenverwirbelungskammern, in: no. 17 in Res Electricae Magdeburgenses, 1st Edn., edited by: Nitsch, J. and Styczynski, Z. A., Otto von Guericke Universität Magdeburg, Universitätsbibliothek, Magdeburg, 2007.
a,
b
Krauthäuser, H. G. and Nitsch, J.: Transient Fields in Mode-Stirred Chambers, in: XXVIIth General Assembly of the International Union of Radio Science, 17–24 August 2002, Maastricht, the Netherlands, URSI 2002, 2002. a
Liu, B., Chang, D., and Ma, M.: Eigenmodes and the Composite Quality Factor of a Reverberating Chamber, NBS Technical Note, National Bureau of Standards,
availabler at:
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1066.pdf
(last access: 3 June 2020), 1983. a
Manicke, A. and Krauthäuser, H. G.: Pulse excitations of reverberation
chambers simulations with an approach using time domain plane waves, in:
International Symposium on Electromagnetic Compatibility – EMC EUROPE, 17–21 September 2012, Rome, Italy, 1–6,
https://doi.org/10.1109/EMCEurope.2012.6396828, 2012.
a
Marple, S.: Digital Spectral Analysis: Second Edition, in: Dover Books on Electrical Engineering, Dover Publications, Dover, 2019.
a,
b,
c
Nakatsukasa, Y., Sète, O., and Trefethen, L. N.: The AAA Algorithm for
Rational Approximation, SIAM J. Scient. Comput., 40, A1494–A1522,
https://doi.org/10.1137/16M1106122, 2018.
a
Peter, T.: Generalized Prony Method, PhD thesis, Georg-August-Universität, Göttingen, 2013.
a,
b
Pfennig, S.: Charakterisierung der Modenverwirbelungskammer der TU Dresden und Untersuchung von Verfahren zur Bestimmung der unabhängigen
Rührerstellungen, TUDpress, Verl. der Wiss., Dresden, available at:
http://slubdd.de/katalog?TN_libero_mab216241659 (last access: 3 February 2020), 2015.
a
Pozar, D. M.: Microwave Engineering, 3rd Edn., John Wiley & Sons, Inc, Hoboken, NJ, 2005. a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964.
a
Semlyen, A. and Dabuleanu, A.: Fast and accurate switching transient
calculations on transmission lines with ground return using recursive
convolutions, IEEE T. Power Apparat. Syst., 94, 561–571,
https://doi.org/10.1109/T-PAS.1975.31884, 1975.
a
Triverio, P.: Vector Fitting, preprint: arXiv 1908.08977, 2019. a