Articles | Volume 14
https://doi.org/10.5194/ars-14-31-2016
https://doi.org/10.5194/ars-14-31-2016
28 Sep 2016
 | 28 Sep 2016

Virtual sensor models for real-time applications

Nils Hirsenkorn, Timo Hanke, Andreas Rauch, Bernhard Dehlink, Ralph Rasshofer, and Erwin Biebl

Related authors

MmWave scattering properties of roads on rough asphalt and concrete surfaces
Vera Kurz, Manuel Fuenfer, Florian Pfeiffer, and Erwin Biebl
Adv. Radio Sci., 21, 57–64, https://doi.org/10.5194/ars-21-57-2023,https://doi.org/10.5194/ars-21-57-2023, 2023
Short summary
Analysis of large-scale UHF-RFID use-cases utilizing full-wave simulation techniques
Miroslav Lach, Christian Looschen, and Erwin Biebl
Adv. Radio Sci., 19, 127–137, https://doi.org/10.5194/ars-19-127-2021,https://doi.org/10.5194/ars-19-127-2021, 2021
Short summary
Road Surface Characteristics for the Automotive 77 GHz Band
Vera Kurz, Hannes Stuelzebach, Florian Pfeiffer, Carlo van Driesten, and Erwin Biebl
Adv. Radio Sci., 19, 165–172, https://doi.org/10.5194/ars-19-165-2021,https://doi.org/10.5194/ars-19-165-2021, 2021
Short summary
Dielectric corner reflectors for mmWave applications
Christian Buchberger, Florian Pfeiffer, and Erwin Biebl
Adv. Radio Sci., 17, 197–203, https://doi.org/10.5194/ars-17-197-2019,https://doi.org/10.5194/ars-17-197-2019, 2019
Short summary
A machine learning joint lidar and radar classification system in urban automotive scenarios
Rodrigo Pérez, Falk Schubert, Ralph Rasshofer, and Erwin Biebl
Adv. Radio Sci., 17, 129–136, https://doi.org/10.5194/ars-17-129-2019,https://doi.org/10.5194/ars-17-129-2019, 2019
Short summary

Cited articles

Bar-Shalom, Y., Li, X. R., and Kirubarajan, T.: Estimation with applications to tracking and navigation: theory algorithms and software, John Wiley & Sons, 2004.
Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles, vol. 19, Proceedings of the 1990 ACM SIGMOD international conference on Management of data, 322–331, ACM New York, NY, USA ©1990 ISBN:0-89791-365-5, https://doi.org/10.1145/93597.98741, 1990.
Behrisch, M. and Weber, M. (Eds.): Modeling Mobility with Open Data: 2nd SUMO Conference 2014 Berlin, Germany, 15–16 May 2014, Springer, 2015.
Bernsteiner, S., Magosi, Z., Lindvai-Soos, D., and Eichberger, A.: Phaenomenologisches Radarsensormodell zur Simulation laengsdynamisch regelnder Fahrerassistenzsysteme, VDI-Bericht 2169, Elektronik im Fahrzeug, 2013.
Bernsteiner, S., Magosi, Z., Lindvai-Soos, D., and Eichberger, A.: Radar Sensor Model for the Virtual Development Process, ATZelektronik worldwide, 10, 46–52, 2015.
Download
Short summary
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The method is widely applicable and able to adapt to complex behavior. As exemplary implementation, a model of an automotive radar system, using a high precision measurement system, is presented.