Articles | Volume 23
https://doi.org/10.5194/ars-23-13-2025
https://doi.org/10.5194/ars-23-13-2025
26 Mar 2025
 | 26 Mar 2025

Frequency-Dependent Variations of the Antenna Reflection Coefficient Due to Different Wetness Conditions on the Antenna Radome

Jonas Tiede, Christian Chwala, Uwe Siart, and Thomas F. Eibert

Related authors

Design and Realization of Chebyshev Bandstop Filters Based on Ceramic Resonators
Jonas F. Tiede and Thomas F. Eibert
Adv. Radio Sci., 19, 117–126, https://doi.org/10.5194/ars-19-117-2021,https://doi.org/10.5194/ars-19-117-2021, 2021
Short summary

Cited articles

Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data, Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, 2020. a
Leijnse, H., Uijlenhoet, R., and Stricker, J.: Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation, Adv. Water Resour., 31, 1481–1493, https://doi.org/10.1016/j.advwatres.2008.03.004, 2008. a
Moroder, C., Siart, U., Chwala, C., and Kunstmann, H.: Microwave Instrument for Simultaneous Wet Antenna Attenuation and Precipitation Measurement, IEEE T. Instrum. Meas., 69, 5853–5861, https://doi.org/10.1109/TIM.2019.2961498, 2020. a
Overeem, A., Leijnse, H., van Leth, T. C., Bogerd, L., Priebe, J., Tricarico, D., Droste, A., and Uijlenhoet, R.: Tropical rainfall monitoring with commercial microwave links in Sri Lanka, Environ. Res. Lett., 16, 074058, https://doi.org/10.1088/1748-9326/ac0fa6, 2021. a
Pastorek, J., Fencl, M., Rieckermann, J., and Bareš, V.: Precipitation Estimates From Commercial Microwave Links: Practical Approaches to Wet-Antenna Correction, IEEE T. Geosci. Remote, 60, 1–9, https://doi.org/10.1109/TGRS.2021.3110004, 2022. a, b
Download
Short summary
A hand sprayer is used to deposit droplets on the radome of an antenna. Before and during the drying process, measurements of the antenna reflection coefficient are performed repeatedly over time and frequency using a vector network analyzer. Continuous drifts from the wet state back to the initial dry state are demonstrated for individual antennas and frequency ranges. The obtained insights qualify the antenna reflection coefficient to be a promising indicator of momentary radome wetness.
Share